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Abstract. We develop a variational framework to understand the properties of functions learned by fitting deep
neural networks with rectified linear unit activations to data. We propose a new function space,
which is reminiscent of classical bounded variation-type spaces, that captures the compositional
structure associated with deep neural networks. We derive a representer theorem showing that deep
ReLU networks are solutions to regularized data fitting problems over functions from this space. The
function space consists of compositions of functions from the Banach spaces of second-order bounded
variation in the Radon domain. These are Banach spaces with sparsity-promoting norms, giving
insight into the role of sparsity in deep neural networks. The neural network solutions have skip
connections and rank bounded weight matrices, providing new theoretical support for these common
architectural choices. The variational problem we study can be recast as a finite-dimensional neural
network training problem with regularization schemes related to the notions of weight decay and
path-norm regularization. Finally, our analysis builds on techniques from variational spline theory,
providing new connections between deep neural networks and splines.
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1. Introduction. A fundamental problem in signal processing, machine learning, and
statistics is to estimate an unknown function from possibly noisy measurements. Specifically,
in supervised learning, the goal is to find a mapping f : Rd → RD that agrees (in some sense)
with a scattered data set {(xn,yn)}Nn=1 ⊂ Rd × RD, i.e., yn ≈ f(xn), n = 1, . . . , N . As there
are infinitely many functions that can agree with any given data set, this problem is inherently
ill-posed. To circumvent this, some form of regularization is imposed on the learning problem.
This problem was classically solved via kernel methods, which are solutions to regularized
variational problems over reproducing kernel Hilbert spaces (RKHS) [1, 48]. While these
variational problems are infinite-dimensional, the RKHS representer theorem [21, 41] says
there exists a unique, parametric, solution to problem, allowing the problem to be recast as a
finite-dimensional optimization. Kernel methods (even before the term “kernel methods” was
coined) have had widespread success dating all the way back to the 1960s, especially due to the
tight connections between kernels, reproducing kernel Hilbert spaces, and splines [11, 27, 48].

However, the last decade has shown that deep neural networks often outperform kernel
methods in a wide variety of tasks, ranging from speech recognition [17] to image classi-
fication [22] to solving inverse problems in imaging [19]. Thus, there is great interest in
understanding the properties of functions learned from data by neural networks, particularly
with the rectified linear unit (ReLU) activation function, which is widey used in practice [25].
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The work of [34, 35] has proven Banach space representer theorems for single-hidden layer
neural networks with ReLU activations by considering variational problems over certain Ba-
nach spaces. In the univariate case, this space is the classical Banach spaces of second-order
bounded variation functions, and the neural network solutions are exactly the well-known
locally adaptive linear splines [12, 26, 47]. In the multivariate case, this space is the Banach
spaces of second-order bounded variation functions in the Radon domain. It is shown in [34, 35]
that training sufficiently wide finite-width neural networks via gradient descent with weight
decay [23] leads to solutions of these variational problems. Due to the similarities of the
variational problems studied in [34, 35] with those studied in variational spline theory, we
refer to the neural networks in the multivariate case as ridge splines of degree one since single-
hidden layer neural networks are simply superpositions of ridge functions and the functions
are multivariate continuous piecewise linear functions.

This paper extends this characterization to deep (multi-layer) neural networks with ReLU
activation functions. We also remark that a special property of deep ReLU networks is that
their input-output relation is continuous piecewise-linear (CPwL) [28]. The reverse is also
true in that any CPwL function can be represented with a sufficiently wide and deep ReLU
network [2]. Thus, one can interpret a deep ReLU network as a multivariate spline of degree
one. This connection between deep neural networks and splines has been observed by a number
of authors [36, 6, 7, 34, 35, 44, 3, 10]. In particular, one can view a deep neural network as a
hierarchical or deep spline [36, 6, 7, 44, 3, 10] to emphasize the compositional nature of deep
neural networks. Due to this special property, we will work exclusively with ReLU activation
functions in this paper, though all of our results are straightforward to extend to any truncated
power activation function.

1.1. Contributions. This paper develops a new variational framework to understand
the properties of functions learned by deep neural networks fit to data. In particular, we
derive a representer theorem for the standard fully-connected feedforward deep ReLU network
architecture. We show that there exist solutions to a certain variational problem that are
realizable by a deep ReLU network. Moreover, these deep ReLU networks have skip connections
rank bounded weight matrices. The number of hidden layers and the rank bounds of the
weight matrices are hyperparameters to the variational problem and are therefore controllable
a priori. We refer to the neural network solutions as deep ridge splines of degree one due to
the similarity of the variational problem studied in this paper with the variational problems
studied in variational spline theory. This paper contributes the following new results:

1. We propose a new function space, which is reminiscent of classical bounded variation-
type spaces, that captures the compositional structure associated with deep neural
networks by considering functions that are compositions of functions from the Banach
spaces studied in our previous work [35].

2. We prove a representer theorem that shows that deep ReLU networks with skip
connections and rank bounded weight matrices are solutions to regularized data-fitting
problems over functions in the compositional Banach spaces.

3. The regularizer in the variational problem corresponds to the sum of the Banach norms
of each function in the composition. These are sparsity-promoting norms. Moreover,
these regularizers can be expressed in terms of neural network parameters, suggesting
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several new, principled forms of regularization for deep ReLU networks that promote
sparse (in the sense of the number of active neurons) solutions. These regularizers are
related to the notion of “weight decay” in neural network training as well as path-norm
regularization.

1.2. Connections to empirical studies in deep learning. Our results provide new theoret-
ical support and insight for a number of empirical findings in deep learning. We show that the
common neural network regularization method of “weight decay” [31] corresponds to Radon
domain total variation regularization. The optimal solutions to the variational problem require
“skip connections” between layers, which provides a new theoretical explanation for the benefits
skip connections provide in practice [16]. The sparse nature of our solutions sheds new light
on the roles of sparsity and redundancy in deep learning, ranging from “drop-out” [18] to the
“lottery ticket hypothesis” [14]. And finally, low-rank weight matrices are a natural by-product
of our variational theory that has precedent in practical studies of deep neural networks; it has
been empirically observed that low-rank weight matrices can speed up learning [4] and improve
accuracy [15], robustness [39], and computational efficiency [49] of deep neural networks.

1.3. Related work. Viewing regularized neural network training problems as variational
problems over certain function spaces has received a lot of interest in the last few years [5, 40, 34,
35, 44, 3, 10], although many of the techniques used in these works are quite classical and rooted
in variational spline theory and the study of continuous-domain inverse problems [51, 12, 26].
A common theme in these works is to leverage the sparisfying nature of total variation
(TV) regularization to learn sparse solutions. Our previous work in [34, 35] proves representer
theorems for both univariate and multivariate single-hidden layer neural networks by considering
such sparsity-promoting total variation regularization. The key analysis tool used in [35] was
the Radon transform due to its tight connections with the analysis of ridge functions. This is
because single-hidden layer neural networks are superpositions of ridge functions (neurons).
While the connections between ridge functions and the Radon transform is classical, dating
back to early work in representation of solutions to certain partial differential equations as
superpositions of ridge functions [20], working with single-hidden layer ReLU networks in the
Radon domain was first studied by [33].

Another line of related work is concerned with the “optimal shaping” of the activation
functions in a deep neural network [44, 3, 10]. In particular, [44] proves a representer theorem
regarding the optimal shaping of the activation functions. They consider the standard fully-
connected feedforward deep neural network architecture, but allow the activation functions to
be learnable. They impose a second-order total variation penalty on the activation functions
and so the optimal shaping of the activation functions corresponds to linear splines with
adaptive knot locations. We remark that we use several techniques developed in [44, 3] to
prove our representer theorem in this paper, particularly in proving existence of solutions
to the variational problem we study. Finally, there is a line of work regarding “deep kernel
learning” [9], in which they derive a representer theorem for compositions of kernel machines.
They consider a construction similar to ours regarding the function space they study, but they
consider compositions of reproducing kernel Hilbert spaces and so the resulting solutions to
their variational problem do not take the form of a deep neural network.
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1.4. Roadmap. In Section 2 we introduce the notation and mathematical formulation
used in the remainder of the paper as well as extend the results of [35] in preparation for
proving our deep ReLU network representer theorem. In Section 3 we prove our main result,
the representer theorem for deep ReLU networks. In Section 4 we discuss applications of our
representer theorem to the training and regularization of deep ReLU networks.

2. Preliminaries. Let S (Rd) be the Schwartz space of smooth and rapidly decaying test
functions on Rd. Its continuous dual, S ′(Rd), is the space of tempered distributions on Rd.
We are also interested in these spaces on Sd−1 × R, where Sd−1 denotes the surface of the
Euclidean sphere in Rd. We say ψ ∈ S (Sd−1 × R) when ψ is smooth and satisfies the decay
condition

sup
γ∈Sd−1

t∈R

∣∣∣∣(1 + |t|k
) d`

dt`
(Dψ)(γ, t)

∣∣∣∣ <∞,
for all integers k, ` ≥ 0 and for all differential operators of all orders D in γ [43, Chapter 6].
Since the Schwartz spaces are nuclear, it follows that the above definition is equivalent to
saying S (Sd−1 × R) = D(Sd−1) ⊗̂S (R), where D(Sd−1) is the space of smooth functions on
Sd−1 and ⊗̂ is the topological tensor product [50, Chapter III]. We can then define the space of
tempered distributions on Sd−1 × R as its continuous dual, S ′(Sd−1 × R).

Let X be a locally compact Hausdorff space. The Riesz–Markov–Kakutani representation
theorem says that M(X), the Banach space of finite Radon measures on X, is the continuous
dual of C0(X), the space of continuous functions vanishing at infinity [13, Chapter 7]. Since
C0(X) is a Banach space when equipped with the uniform norm, we have

(2.1) ‖u‖M(X) := sup
ϕ∈C0(X)
‖ϕ‖∞=1

〈u, ϕ〉.

The norm ‖·‖M(X) is exactly the total variation norm (in the sense of measures). As S (X)
is dense in C0(X), we can associate every measure in M(X) with a tempered distribution and
view M(X) ⊂ S ′(X), providing the description

M(X) :=
{
u ∈ S ′(X) : ‖u‖M(X) <∞

}
,

and so the duality pairing 〈·, ·〉 in (2.1) can be viewed, formally, as the integral

〈u, ϕ〉 =

∫
X
ϕ(x)u(x) dx,

where u is viewed as an element of S ′(X). The spaceM(X) can be viewed as a “generalization”
of L1(X) in the sense that for any f ∈ L1(X), ‖f‖L1(X) = ‖f‖M(X), but M(X) is a strictly
larger space that also includes the shifted Dirac impulses δ(· − x0), x0 ∈ X, with the property
that ‖δ(· − x0)‖M(X) = 1. We also remark that the M-norm is the continuous-domain

analogue of the `1-norm. In this paper, we will mostly work with X = Sd−1 × R.
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2.1. Scalar-valued single-hidden layer ReLU networks and variational problems. Our
work in [35] proved a representer theorem for single-hidden layer ReLU networks with scalar
outputs by considering variational problems over the space of functions of second-order bounded
variation in the Radon domain. The Radon transform of a function f : Rd → R is given by

R{f}(γ, t) :=

∫
{x:γTx=t}

f(x) ds(x), (γ, t) ∈ Sd−1 × R,

where s denotes the surface measure on the hyperplane
{
x : γTx = t

}
. The Radon domain is

parameterized by a direction γ ∈ Sd−1 and an offset t ∈ R. When working with the Radon
transform of functions defined on Rd, the following ramp filter arises in the Radon inversion
formula

Λd−1 = (−∂2
t )

d−1
2 ,

where ∂t denotes the partial derivative with respect to the offset variable, t, of the Radon
domain and fractional powers are defined in terms of Riesz potentials. The space of functions
of second-order bounded variation in the Radon domain is then given by

(2.2) R BV2(Rd) =
{
f ∈ L∞,1(Rd) : R TV2(f) <∞

}
,

where L∞,1(Rd) is the Banach space1 of functions mapping Rd → R of at most linear growth
and

(2.3) R TV2(f) = cd‖∂2
t Λd−1 R f‖M(Sd−1×R)

denotes the second-order total variation of a function in the offset variable of the Radon
domain, where c−1

d = 2(2π)d−1 is a dimension-dependant constant that arises when working
with the Radon transform. Note that all the operators that appear in (2.3) must be understood
in the distributional sense. We refer the reader to [35, Section 3] for more details. We now
state the main result of [35].

Proposition 2.1 (special case of [35, Theorem 1]). Consider the problem of interpolating
the scattered data {(xn, yn)}Nn=1 ⊂ Rd × R with N > d + 1. Then, under the hypothesis of
feasibility (i.e., yn = ym whenever xn = xm), there exists a solution to the variational problem

(2.4) min
f∈R BV2(Rd)

R TV2(f) s.t. f(xn) = yn, n = 1, . . . , N

of the form

(2.5) s(x) =

K∑
k=1

vk ρ(wT
k x− bk) + cTx+ c0,

where K ≤ N − (d+ 1), ρ = max{0, ·}, vk ∈ R, wk ∈ Sd−1, bk ∈ R, c ∈ Rd, and c0 ∈ R.

1It is a Banach space when equipped with the norm ‖f‖∞,1
:= ess supx∈Rd |f(x)|(1 + ‖x‖2)−1.
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Remark 2.2. Proposition 2.1 says that there always exists a solution to the variational
problem in (2.4) that can realizable by a single-hidden layer ReLU network with a skip
connection [16], which is the affine term in (2.5). In other words, Proposition 2.1 is a
representer theorem for single-hidden layer ReLU networks.

Remark 2.3. As discussed in [35, Remark 3], the fact that wk ∈ Sd−1 in (2.5) does not
restrict the single-hidden layer neural network due to the positive homogeneity of the ReLU.
Indeed, given any single-hidden layer neural network with wk ∈ Rd \ {0}, we can use the fact
that ReLU is positively homogeneous of degree 1 to rewrite the network as

x 7→
K∑
k=1

vk‖wk‖2 ρm(w̃T
k x− b̃k) + cTx+ c0,

where w̃k := wk/‖wk‖2 ∈ Sd−1 and b̃k := bk/‖wk‖2 ∈ R.

Given a single-hidden layer ReLU network, we can explicitly compute its R TV2-seminorm
in terms of network parameters. This is summarized in the following proposition.

Proposition 2.4 (special case of [35, Lemma 25]). Given a single-hidden layer neural network

s(x) =

K∑
k=1

vk ρ(wT
k x− bk) + cTx+ c0,

where ρ = max{0, ·}, vk ∈ R, wk ∈ Rd, bk ∈ R, c ∈ Rd, and c0 ∈ R,

(2.6) R TV2(s) =
K∑
k=1

|vk|‖wk‖2.

We remark that (2.6) is sometimes referred to as the path-norm of the network [29]. Moreover,
we see that (2.6) is a kind of `1-norm on the network parameters, giving insight into the
sparsity-promoting aspect of the R TV2-seminorm on network weights.

Note that R BV2(Rd) is defined by a seminorm, and the null space of R TV2(·) is nontrivial;
it is the space of affine functions on Rd. It was proven in [35, Theorem 22] that R BV2(Rd)
can be turned into a bona fide Banach space when equipped with an appropriate norm.

Lemma 2.5. The space R BV2(Rd) equipped with the norm

(2.7) ‖f‖R BV2(Rd) := R TV2(f) + |f(0)|+
d∑

k=1

|f(ek)− f(0)|,

where {ek}dk=1 denotes the canonical basis of Rd, has the following properties:
1. It is a Banach space.
2. For any x0 ∈ Rd, the Dirac impulse δ(· − x0) : f 7→ f(x0) is weak∗ continuous on

R BV2(Rd).
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The proof of Lemma 2.5 appears in Appendix A. We remark that Item 1 is a corollary
of [35, Theorem 22] and Item 2 is a new result. In particular, Item 2 plays a crucial role in
proving existence of solutions to the variational problem studied in our deep ReLU network
representer theorem. The R BV2(Rd)-norm is a sparsity promoting norm since R TV2(·) is
defined via an M-norm, the continuous-domain analogue of the `1-norm.

Remark 2.6. Lemma 2.5 implies that the result of Proposition 2.1 also holds for regularized
problems of the form

min
f∈R BV2(Rd)

N∑
n=1

`(yn, f(xn)) + λ R TV2(f),

where λ > 0 is an adjustable regularization parameter and the loss function `(·, ·) is convex,
coercive, and lower semi-continuous. Note that these are slightly weaker conditions on the loss
function than in [35, Theorem 1]. This version of the result holds due to the weak∗ continuity
of the Dirac impulse δ(· − x0) : f 7→ f(x0) on R BV2(Rd) combined with [46, Theorem 3] for
the conditions on the loss function.

While Proposition 2.1 provides a powerful representer theorem result for single-hidden
layer neural networks, the affine component of any solution is unregularized due to the null
space of R TV2(·) being the space of affine functions on Rd. Therefore, we modify the problem
in (2.4) in order to explicitly regularize the affine component of the functions. This results in
the following new representer theorem for single-hidden layer ReLU networks.

Theorem 2.7. Consider the problem of interpolating the scattered data {(xn, yn)}Nn=1 ⊂
Rd × R with N > 0. Then, under the hypothesis of feasibility (i.e., yn = ym whenever
xn = xm), there exists a solution to the variational problem

(2.8) min
f∈R BV2(Rd)

‖f‖R BV2(Rd) s.t. f(xn) = yn, n = 1, . . . , N

of the form

(2.9) s(x) =

K∑
k=1

vk ρ(wT
k x− bk) + cTx+ c0,

where K ≤ N , ρ = max{0, ·}, vk ∈ R, wk ∈ Sd−1, bk ∈ R, c ∈ Rd, and c0 ∈ R.

The proof of Theorem 2.7 appears in Appendix B. The key difference between Theorem 2.7
and Proposition 2.1 is that in Theorem 2.7, we are minimizing the R BV2(Rd)-norm rather
than the R TV2-seminorm as in Proposition 2.1. This results in the sparsity of the number of
neurons in the solution being N rather than N − (d+ 1). Additionally, Theorem 2.7 explicitly
regularizes the skip connection that appears in (2.9).

Lemma 2.8. Given a single-hidden layer neural network

s(x) =
K∑
k=1

vk ρ(wT
k x− bk) + cTx+ c0,
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where ρ = max{0, ·}, vk ∈ R, wk ∈ Rd, bk ∈ R, c ∈ Rd, and c0 ∈ R,

(2.10) ‖s‖R BV2(Rd) =
K∑
k=1

|vk|‖wk‖2 + |s(0)|+
d∑

n=1

|s(en)− s(0)|.

Proof. The result follows from Proposition 2.4 and Lemma 2.5.

2.2. Vector-valued single-hidden layer ReLU networks and variational problems. Since
a deep neural network is the composition of vector-valued single-hidden layer neural networks,
we require a representer theorem for vector-valued single-hidden layer ReLU networks as a
precursor to our representer theorem for deep ReLU networks. Extending Theorem 2.7 for
vector-valued functions follows standard techniques. In particular, we follow the technique
of [42] which derives a representer theorem for vector-valued smoothing splines.

Lemma 2.9. Define the vector-valued analogue of R BV2(Rd) by the Cartesian product

R BV2(Rd)× · · · ×R BV2(Rd)︸ ︷︷ ︸
D times

.

This space can be viewed as the Bochner space `1([D]; R BV2(Rd)), where [D] = {1, . . . , D},
and can therefore be equipped with the norm

‖f‖`1([D];R BV2(Rd)) =
D∑

m=1

‖fm‖R BV2(Rd),

where f = (f1, . . . , fD). For brevity, write R BV2(Rd;RD) for `1([D]; R BV2(Rd)). This space
has the following properties:

1. It is a Banach space.
2. For any x0 ∈ Rd, the point evaluation operator

x̃0 : f 7→ f(x0) =

 〈δ(· − x0), f1〉
...

〈δ(· − x0), fD〉

 =

f1(x0)
...

fD(x0)


is component-wise weak* continuous.

Proof. Item 1 follows by construction since R BV2(Rd) is itself a Banach space from Item 1
in Lemma 2.5. Item 2 follows from Item 2 in Lemma 2.5.

Remark 2.10. We can define different (but equivalent) norms on R BV2(Rd;RD) via the
`p([D]; R BV2(Rd))-norms, where 1 ≤ p <∞. We focus on the case of p = 1 in this paper for
clarity.

Lemma 2.11. Let f ∈ R BV2(Rd;RD). Then, f is Lipschitz continuous and satisfies the
Lipschitz bound

‖f(x)− f(y)‖1 ≤ ‖f‖R BV2(Rd;RD) ‖x− y‖1.

The proof of Lemma 2.11 appears in Appendix D.
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Theorem 2.12. Consider the problem of interpolating the scattered data {(xn,yn)}Nn=1 ⊂
Rd × RD with N > 0. Then, under the hypothesis of feasibility (i.e., yn = ym whenever
xn = xm), there exists a solution to the variational problem

(2.11) min
f∈R BV2(Rd;RD)

‖f‖R BV2(Rd;RD) s.t. f(xn) = yn, n = 1, . . . , N

of the form

(2.12) s(x) =
K∑
k=1

vk ρ(wT
k x− bk) + Cx+ c0,

where K ≤ ND, ρ = max{0, ·}, vk ∈ RD, wk ∈ Sd−1, bk ∈ R, C ∈ RD×d, and c0 ∈ RD.
Moreover, there always exists a solution of the form in (2.12) in which vk is 1-sparse.

The proof of Theorem 2.12 appears in Appendix C. We also remark that the tightness of
the bound K ≤ ND is an open question.

Remark 2.13. As discussed in Remark 2.3, the fact that wk ∈ Sd−1 in (2.12) does not
restrict the single-hidden layer neural network due to the positive homogeneity of the ReLU.

Lemma 2.14. Given a vector-valued single-hidden layer neural network

s(x) =
K∑
k=1

vk ρ(wT
k x− bk) + Cx+ c0,

where ρ = max{0, ·}, vk ∈ RD, wk ∈ Rd, bk ∈ R, C ∈ RD×d, and c0 ∈ RD,

(2.13) ‖s‖R BV2(Rd;RD) =

K∑
k=1

‖vk‖1‖wk‖2 +

D∑
m=1

(
|sm(0)|+

d∑
n=1

|sm(en)− sm(0)|

)
.

Proof. For m = 1, . . . , D, we can write

sm(x) =
K∑
k=1

vk,m ρ(wT
k x− bk) + cTmx+ c0,m,

where sm is the mth component of s, cm is the mth row of C, and c0,m is the mth component
of c0. The result follows from Lemma 2.8 and the definition of the R BV2(Rd;RD)-norm.

3. A Representer Theorem for Deep ReLU Networks. In this section, we will prove our
representer theorem for deep ReLU networks. We consider functions that are compositions of
functions from the Banach spaces defined in Lemma 2.9. Let

R BV2
deep(Rd0 ; · · · ;RdL)

:=
{
f = f (L) ◦ · · · ◦ f (1) : f (`) ∈ R BV2(Rd`−1 ;Rd`), ` = 1, . . . , L

}
.

denote the space of all such functions.
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For brevity, we will write R BV2
deep(L) for R BV2

deep(Rd0 ; · · · ;RdL). This definition reflects
two standard architectural specifications for deep neural networks: the number of hidden layers
L and the functional “widths”, d`, of each layer. That is, each function in the composition will
ultimately correspond to a layer in a deep neural network in our representer theorem.

Lemma 3.1. Let f = f (L) ◦ · · · ◦ f (1) ∈ R BV2
deep(L). Then, f is Lipschitz continuous and

satisfies the Lipschitz bound

‖f(x)− f(y)‖1 ≤

(
L∏

`=1

‖f (`)‖
R BV2(Rd`−1 ;Rd` )

)
‖x− y‖1.

Proof. The result follows by repeatedly applying Lemma 2.11.

We now state our representer theorem for deep ReLU networks.

Theorem 3.2. Let L be a positive integer corresponding to the depth of a deep ReLU network
and let d0, . . . , dL be positive integers corresponding to the intermediate dimensions of a deep
neural network. Consider the problem of approximating the scattered data {(xn,yn)}Nn=1 ⊂
Rd0 × RdL with N > 0 denoting the number of data. Let `(·, ·) be an arbitrary nonnegative
lower semi-continuous loss function and let λ > 0 be a regularization parameter. Then, there
exists a solution to the variational problem

(3.1) min
f (`)∈R BV2(Rd`−1 ;Rd` )

`=1,...,L
f=f (L)◦···◦f (1)

N∑
n=1

`(yn, f(xn)) + λ
L∑

`=1

‖f (`)‖
R BV2(Rd`−1 ;Rd` )

of the form

(3.2) s(x) = x(L),

where x(L) is computed recursively via

(3.3)

{
x(0) := x,

x(`) := V(`)ρ(W(`)x(`−1) − b(`)) + C(`)x(`−1) + c
(`)
0 , ` = 1, . . . , L,

where ρ applies ρ = max{0, ·} component-wise and for ` = 1, . . . , L, V(`) ∈ Rd`×K(`)
, W(`) ∈

RK(`)×d`−1, b(`) ∈ RK(`)
, C(`) ∈ Rd`×d`−1, and c

(`)
0 ∈ Rd`, where K(`) ≤ Nd`.

Remark 3.3. Note that the search space in (3.1) is over the Cartesian product

(3.4) R BV2(Rd0 ;Rd1)× · · · ×R BV2(RdL−1 ;RdL)

rather than R BV2
deep(L). This is because given a function f ∈ R BV2

deep(L), there could be

many decompositions such that f = f (L) ◦ · · · ◦ f (1). Therefore, in order for the regularization
term in (3.1) to be well-defined, we formulate the problem over (3.4).

Remark 3.4. Theorem 3.2 also holds for the problem of interpolating scattered data.
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The neural network architecture that appears in (3.3) can be seen in Figure 1. Moreover,
this exact architecture was recently studied in the empirical work in [15], and is referred to
as a deep ReLU network with linear bottlenecks. Since the variational problem in (3.1) is
reminiscent of the variational problems studied in variational spline theory and since the
resulting deep ReLU network solution in (3.2) is a continuous piecewise-linear function, in a
similar vein to [44, 3, 10], we refer to such functions as deep ridge splines of degree one.

w
(1)
k w

(3)
kw

(2)
kv

(1)
k v

(2)
k v

(3)
k

Figure 1. This figure shows the architecture of the deep neural network in (3.3) in the case of L = 3 hidden
layers. The black nodes denote input nodes, the blue nodes denote ReLU nodes, and the gray nodes denote linear
nodes. Skip connection nodes are omitted for clarity.

Remark 3.5. Since the regularizer in (3.1) directly controls the R BV2(Rd`−1 ;Rd`)-norm
of each layer, we see from Lemma 2.11, that the variational problem is essentially regularizing
a bound on the Lipschitz constant of the function.

Remark 3.6. The regularizer that appears in (3.1) can be replaced by

ψ0

(
L∑

`=1

ψ`

(
‖f (`)‖

R BV2(Rd`−1 ;Rd` )

))
,

where ψ` : [0,∞)→ R, ` = 0, . . . , L is a strictly increasing and convex function, and still admit
a solution that takes the form of a deep neural network as in (3.2). Thus, there are many
choices of regularization that result in a representer theorem for deep ReLU networks.
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Remark 3.7. Notice that (3.2) is precisely the standard L-hidden layer deep ReLU network
architecture with rank bounded weight matrices and skip connections. Indeed, the weight
matrix of the `th layer is A(`) := W(`+1)V(`). More specifically, by dropping biases and skip
connections for clarity, we see that s(x) in (3.2) can be computed recursively as

(3.5)


x̃(0) := x,

x̃(`) := ρ(A(`−1)x̃(`−1)), ` = 1, . . . , L,

s(x) := A(L)x̃(L),

where 
A(0) := W(1),

A(`) := W(`+1)V(`), ` = 2, . . . , L− 1,

A(L) := V(L).

From the dimensions of V(`) and W(`) in Theorem 3.2, we see that for ` = 0, . . . , L,
rank(A(`)) ≤ min{Nd`+1, d`} and rank(A(L)) ≤ dL. In a typical scenario, where the {d`}L`=1

are of the same order, this says that rank(A(`)) ≤ d`.
Remark 3.8. The architecture of the network in (3.3) is not restrictive of what functions

can be represented by such a network. In particular, the architecture in (3.3) is as expressive
as the standard deep ReLU network architecture with hidden layer widths of d1, . . . , dL.

Proof of Theorem 3.2. Given f = f (L) ◦ · · · ◦ f (1) such that f (`) ∈ R BV2(Rd`−1 ;Rd`),
` = 1, . . . , L, write

J (f) := J (f (1), . . . , f (L)) :=
N∑

n=1

`(yn, f(xn)) + λ
L∑

`=1

‖f (`)‖
R BV2(Rd`−1 ;Rd` )

for the objective value of f . Next, consider an arbitrary g = g(L) ◦ · · · ◦ g(1) such that
g(`) ∈ R BV2(Rd`−1 ;Rd`), ` = 1, . . . , L, with objective value C := J (g). We may transform
the unconstrained problem in (3.1) into the equivalent constrained problem

(3.6) min
f (`)∈R BV2(Rd`−1 ;Rd` )

`=1,...,L
f=f (L)◦···◦f (1)

J (f) s.t. ‖f (`)‖
R BV2(Rd`−1 ;Rd` )

≤ C/λ, ` = 1, . . . , L.

This transformation is valid since any function that does not satisfy the constraints in (3.6)
has a strictly larger objective value than g, and is therefore not in the solution set.

For f0 = f
(L)
0 ◦ · · · ◦f (1)

0 , f
(`)
0 ∈ R BV2(Rd`−1 ;Rd`), ` = 1, . . . , L, we will show that the map

f
(˜̀)
0 7→ J (f0), for a fixed ˜̀∈ {1, . . . , L}, is weak∗ lower semi-continuous on R BV2(Rd˜̀−1 ;Rd˜̀).

First notice that the map f
(˜̀)
0 7→ f0(x0), for any x0 ∈ Rd, is component-wise weak∗ continuous

on R BV2(Rd˜̀−1 ;Rd˜̀). Indeed, since each f
(`)
0 , ` = 1, . . . , L, is component-wise continuous by

Lemma 2.11 and since the point evaluation is component-wise weak∗ continuous by Lemma 2.9,

the map f
(˜̀)
0 7→ f

(L)
0 ◦ · · · ◦ f (1)

0 (x0) is made up of compositions of component-wise continuous
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and component-wise weak∗ continuous functions, and is therefore itself component-wise weak∗

continuous on R BV2(Rd˜̀−1 ;Rd˜̀). Next, since the loss function is lower semi-continuous and

every norm is weak∗ continuous on its corresponding Banach space, we have that f
(˜̀)
0 7→ J (f0)

is weak∗ lower semi-continuous on R BV2(Rd˜̀−1 ;Rd˜̀). Therefore, (f
(1)
0 , . . . , f

(L)
0 ) 7→ J (f)

is weak∗ continuous over the Cartesian product in (3.4). Finally, by the Banach–Alaoglu
theorem [38, Chapter 3], the feasible set in (3.6) is weak∗ compact. Thus, there exists a
solution to (3.6) (and subsequently (3.1)) by the Weierstrass extreme value theorem on general
topological spaces [24, Chapter 5].

Let s̃ = s̃(L) ◦ · · · ◦ s̃(1) be a (not necessarily unique) solution to (3.1). By applying s̃ to each
data point xn, n = 1, . . . , N , we can recursively compute the intermediate vectors zn,` ∈ Rd`

as follows
• Initialize zn,0 := xn.
• For each ` = 1, . . . , L, recursively update zn,` := s̃(`)(zn,`−1).

The solution s̃ must satisfy

s̃(`) ∈ arg min
f∈R BV2(Rd`−1 ;Rd` )

‖f‖
R BV2(Rd`−1 ;Rd` )

s.t. f(zn,`−1) = zn,`, n = 1, . . . , N,

for ` = 1, . . . , L. To see this, note that if the above display did not hold, it would contradict
the optimality of s̃. By Theorem 2.12, there always exists a solution to the above display that
enforces the form of the solution in (3.2).

4. Applications to Deep Network Training and Regularization. In this section we will
discuss applications of the representer theorem in Theorem 3.2 to the training and regularization
of deep ReLU networks. Since Theorem 3.2 guarantees existence of a solution to the variational
problem in (3.1) that is realizable by a deep ReLU network as in (3.2), one can find a solution
to the problem in (3.1) by finding a solution to a finite-dimensional deep network training
problem.

Lemma 4.1. Given a deep neural network s = s(L) ◦ · · · ◦ s(1) as in (3.2),

L∑
`=1

‖s(`)‖
R BV2(Rd`−1 ;Rd` )

=
L∑

`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w

(`)
k ‖2 +

D∑
m=1

(
|s(`)

m (0)|+
d∑

n=1

|s(`)
m (en)− s(`)

m (0)|

)
where v

(`)
k is the kth column of V(`) and w

(`)
k is the kth row of W(`).

Proof. The proof follows by invoking Lemma 2.14 on each s(`), ` = 1, . . . , L.

Lemma 4.1 implies the following corollary to Theorem 3.2.

Corollary 4.2. Let θ denote the parameters of a deep neural network as in (3.2) and let
Θ = RM denote the space of these parameters, where M is the total number of scalar parameters
in the network. Write fθ to denote a deep neural network parameterized by θ. Then, the
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solutions to the finite-dimensional neural network training problem

(4.1)

min
θ∈Θ

N∑
n=1

`(yn, fθ(xn))

+ λ
L∑

`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w

(`)
k ‖2 +

D∑
m=1

(
|f (`)
θ,m(0)|+

d∑
n=1

|f (`)
θ,m(en)− f (`)

θ,m(0)|

)
where {(xn,yn)}Nn=1 ⊂ Rd0 × RdL is a scattered data set, `(·, ·) is an arbitrary non-negative
lower semi-continuous loss function, and λ > 0 is an adjustable regularization parameter, are
solutions to (3.1) so long as K(`) ≥ Nd`.

We can also consider a different regularizer than the one in Corollary 4.2 that results in a
finite-dimensional neural network training problem equivalent to (4.1).

Corollary 4.3. The solutions to

(4.2)

min
θ∈Θ

N∑
n=1

`(yn, fθ(xn))

+ λ
L∑

`=1

(
‖V(`)‖21,2 + ‖W(`)‖2F

2
+

D∑
m=1

(
|f (`)
θ,m(0)|+

d∑
n=1

|f (`)
θ,m(en)− f (`)

θ,m(0)|

))

are also solutions to (4.1), where

‖V(`)‖21,2 :=

K(`)∑
k=1

‖v(`)
k ‖

2
1

is the mixed `1`2-norm of V(`) and ‖·‖F is the usual Frobenius norm of a matrix. Moreover,

the solutions to (4.2) satisfy the property that ‖v(`)
k ‖1 = ‖w(`)

k ‖2, ` = 1, . . . , L, k = 1, . . . ,K(`).

Proof. The kth neuron in the `th layer of a deep neural network as in (3.2) takes the form

x 7→ v
(`)
k ρ(w

(`)
k

T
x− b(`)k ). Due to the positive homogenity of the ReLU, v

(`)
k and w

(`)
k can be

rescaled so that ‖v(`)
k ‖1 = ‖w(`)

k ‖2 without altering the function of the network. Therefore,

minimizing ‖v(`)
k ‖

2
1 + ‖w(`)

k ‖
2
2 is achieved when ‖v(`)

k ‖1 = ‖w(`)
k ‖2. The result then follows from

the fact that when ‖v(`)
k ‖1 = ‖w(`)

k ‖2 we have

‖v(`)
k ‖

2
1 + ‖w(`)

k ‖
2
2

2
= ‖v(`)

k ‖1‖w
(`)
k ‖2.

Remark 4.4. While the problems in (4.1) and (4.2) take the form of neural network
training problems with new, principled forms of regularization, it’s important to note that the
problems are nonconvex, and our results say nothing about algorithms for actually solving the
optimization problems.
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Remark 4.5. Due to the sparsity-promoting nature of the R BV2(Rd`−1 ;Rd`)-norms, the
regularizers that appear in (4.1) and (4.2) promote sparse (in the sense of the number of
neurons) deep ReLU network solutions.

Remark 4.6. The term

D∑
m=1

(
|f (`)
θ,m(0)|+

d∑
n=1

|f (`)
θ,m(en)− f (`)

θ,m(0)|

)

that appears in (4.1) and (4.2) simply imposes an `1-norm on the coefficients of the affine part
(i.e., the skip connection in the neural network realization) on each layer (see Appendix A).
Therefore, one may also consider the regularizers

(4.3)
L∑

`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w

(`)
k ‖2 + ‖C(`)‖1,1 + ‖c(`)

0 ‖1


in place of (4.1) or

(4.4)

L∑
`=1

(
‖V(`)‖21,2 + ‖W(`)‖2F

2
+ ‖C(`)‖1,1 + ‖c(`)

0 ‖1

)
,

in place of (4.2), where

‖C‖1,1 :=

D∑
m=1

d∑
k=1

|cm,k|

denotes the mixed `1`1-norm of C.

Remark 4.7. It is common in many deep learning papers to consider deep neural networks
without biases and skip connections (see, e.g., [29, 30, 32, 8]). Since the term

(4.5)

D∑
m=1

(
|f (`)
θ,m(0)|+

d∑
n=1

|f (`)
θ,m(en)− f (`)

θ,m(0)|

)

that appears in (4.1) and (4.2) simply imposes an `1-norm on the coefficients of the affine part
(i.e., the skip connection in the neural network realization) on each layer (see Appendix A),
the following two regularizers naturally arise from our variational framework in the case of a
deep neural network with no biases or skip connections:

(4.6)

L∑
`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w

(`)
k ‖2

or

(4.7)
1

2

L∑
`=1

‖V(`)‖21,2 + ‖W(`)‖2F,

where (4.6) and (4.7) are in fact equivalent by the same argument as in the proof of Corollary 4.3.
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4.1. Connections to existing deep network regularization schemes.. The regularizers
that appear in (4.1)–(4.4), (4.6), and (4.7) are principled regularizers for training deep ReLU
networks. Moreover, the discussed regularizers are related to the well-known weight decay [23]
and path-norm [29] regularizers for deep ReLU networks.

Training a neural network with weight decay is one of the most common regularization
schemes for deep ReLU networks. This corresponds to an `2-norm regularization on all the
network weights. The regularizer that appears in (4.7) almost takes the form of an `2-norm
of the network weights except that the regularization on the V(`) is not the Frobenius norm.
By considering a slightly different architecture than in (3.3), where it is imposed that the
columns of V(`) are 1-sparse, the regularizer in (4.7) exactly corresponds to weight decay (since
‖V(`)‖21,2 = ‖V(`)‖2F when the columns of V(`) are 1-sparse). Training this architecture with
this regularizer still corresponds to finding a solution to the variational problem in (3.1) since
it simply imposes that the outputs of each layer of the deep network are completely decoupled
(see Remark C.1). The utility of not considering such an architecture is to promote neuron
sharing between the outputs in each layer outputs of each layer.

Another common regularization scheme for deep ReLU networks is the path-norm regular-
izer. In particular, several works [29, 30, 32, 8] consider deep ReLU networks with no biases or
skip connections mapping Rd → R of the form s(x) = x(L), where x(L) is computed via

(4.8)


x(0) := x,

x(`) := ρ(A(`−1)x(`−1)), ` = 1, . . . , L,

x(L) := a(L)Tx(L),

where ρ denotes applying ρ component-wise, A(0) ∈ RK(1)×d, A(`) ∈ RK(`+1)×K(`)
, ` =

1, . . . , L− 1, and a(L) ∈ RK(L)
. Note that (4.8) is almost the same as the architecture in our

framework if we drop biases and skip connections (see (3.5) in Remark 3.7). These works then
consider path-norm regularization of the form

(4.9)
K(L)∑
kL=1

K(L−1)∑
kL−1=1

· · ·
K(1)∑
k1=1

d∑
k0=1

|ak0,k1 ||ak1,k2 | · · · |akL−1,kL ||akL |,

where ak`,k`+1
denotes the (k`, k`+1)th entry in A(`) and akL denotes the kLth entry in a(L).

Consider regularizing a deep ReLU network (with no biases or skip connections) from our
framework with the following regularizer2, which arises with a particular choice of {ψ`}L`=0 in
Remark 3.6,

(4.10)
L∏

`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w

(`)
k ‖2.

We have that (4.10) is an upper bound on something that looks very similar to the path-norm
in (4.9). Indeed, first notice that if we write the deep ReLU network from our framework in

2Where we drop the term in (4.5) as discussed in Remark 4.7.
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the form in (3.5), we have

(4.11) |ak`,k`+1
| = |v(`)

k

T
w

(`+1)
k | ≤ ‖v(`)

k ‖2‖w
(`+1)
k ‖2 ≤ ‖v(`)

k ‖1‖w
(`+1)
k ‖2,

where ak`,k`+1
denotes the (k`, k`+1)th entry in A(`) as defined in Remark 3.7. Therefore,

L∏
`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w

(`)
k ‖2 =

K(L)∑
kL=1

· · ·
K(1)∑
k1=1

‖w(1)
k1
‖2‖v(1)

k1
‖1‖w(2)

k2
‖2‖v(2)

k2
‖1 · · · ‖w(L)

kL
‖2‖v(L)

kL
‖1

≥
K(L)∑
kL=1

· · ·
K(1)∑
k1=1

‖w(1)
k1
‖2 |ak1,k2 | · · ·

∣∣akL−1,kL

∣∣ ‖v(L)
kL
‖1,

where the last line holds from (4.11). We see that the last line in the above display is the same
as the path-norm in (4.9), apart from how it treats weights in the first and last layers. We
also remark that the work in [8] show that the path-norm in (4.9) controls the Rademacher
and Gaussian complexity of deep ReLU networks.

5. Conclusion. In this paper we have proven a representer theorem for deep ReLU net-
works3. We have shown that deep ReLU networks with L-hidden layers, skip connections,
and rank bounded weight matrices are solutions to a variational problem over compositions
of functions in R BV2-spaces. This variational problem can be recast as a finite-dimensional
neural network training problem with various choices of regularization. We have therefore
derived several new, principled regularizers for deep ReLU networks. Moreover, these regular-
izers promote sparse solutions. We have shown that these new regularizers are related to the
well-known weight decay and path-norm regularization schemes commonly used in the training
of deep ReLU networks. The main followup question revolves around more understanding of
the compositional space R BV2

deep(L). This entails first having further understanding of the

R BV2-spaces. The function spaces studied in this paper are new and not classical and future
work will be directed at understanding how these new spaces are related to classical function
spaces studied in functional analysis.

Appendix A. Topological Properties of R BV2(Rd). In this section we will prove
Lemma 2.5. We will rely on many results developed in [35]. While the definition of R BV2(Rd)
given in (2.2) is convenient from an intuitive perspective, it does not lend itself to analysis
due to R TV2(·) being a seminorm with null space P1(Rd), the space of polynomials of
degree at most 1, i.e., affine functions in Rd. Thus, we use the result of [35, Theorem 22]
to characterize R BV2(Rd) as a Banach space. In particular, [35, Theorem 22] considers an
arbitrary biorthogonal system of P1(Rd) in order to equip R BV2(Rd) with a bona fide norm.

Definition A.1. Let N be a finite-dimensional space with N0 := dimN . The pair (φ,p) =
{(φn, pn)}N0−1

n=0 is called a biorthogonal system for N if p = {pn}N0−1
n=0 is a basis of N and

the “boundary” functionals φ = {φn}N0−1
n=0 with φn ∈ N ′ (the continuous dual of N ) satisfy the

biorthogonality condition 〈φk, pn〉 = δ[k − n], k, n = 0, . . . , N0 − 1, where δ[·] is the Kronecker
impulse.

3As stated in the introduction, all our results are straightforward to generalize to any truncated power
activation function.
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Proposition A.2 (see [35, Theorem 22, Item 3]). Let (φ,p) be a biorthogonal system for
P1(Rd). Then, R BV2(Rd) equipped with the norm

‖f‖R BV2(Rd) = R TV2(f) + ‖φ(f)‖1,

where φ(f) = (〈φ0, f〉, . . . , 〈φd, f〉) ∈ Rd+1, is a Banach space.

We can now prove Item 1 of Lemma 2.5.

Proof of Lemma 2.5, Item 1. By Proposition A.2 it suffices to find a biorthogonal system
(φ,p) of P1(Rd) so that for every f ∈ R BV2(Rd) we have

(A.1) ‖φ(f)‖1 = |f(0)|+
d∑

k=1

|f(ek)− f(0)|.

Put p0(x) := 1 and pk(x) := xk, k = 1, . . . , d. Clearly p is a basis for P1(Rd). Put φ0 := δ
and φk := δ(· − ek)− δ, k = 1, . . . , d, where δ denotes the Dirac impulse on Rd and ek denotes
the kth canonical basis vector of Rd. Then, (φ,p) is a biorthogonal system for P1(Rd). Indeed,
we have 〈φ0, p0〉 = 1 and 〈φk, pk〉 = pk(ek)− pk(0) = 1− 0 = 1, k = 1, . . . , d. We also have

〈φ0, pk〉 = pk(0) = 0, k = 1, . . . , d,

〈φk, p0〉 = p0(ek)− p0(0) = 1− 1 = 0, k = 1, . . . , d,

〈φk, pn〉 = pn(ek)− pn(0) = 0 + 0 = 0, k, n = 1, . . . , d, k 6= n.

A computation shows that (A.1) holds with this choice of biorthogonal system.

In order to prove Item 2 of Lemma 2.5, we must show that the Dirac impulse, δ(· − x0),
x0 ∈ Rd, is weak∗ continuous on R BV2(Rd). The following proposition characterizes the
weak∗ continuous linear functionals on a Banach space.

Proposition A.3 (see [37, Theorem IV.20, pg. 114]). Let X be a Banach space. The only
weak∗ continuous linear functionals on X ′ (the continuous dual of X ) are elements of X .

Therefore, we must show that the Dirac impulse is contained in the predual of R BV2(Rd).
Before we can prove this, we require an important result from [35]. Recall from (2.3) that

R TV2(f) = cd‖∂2
t Λd−1 R f‖M(Sd−1×R).

Put R := cd ∂
2
t Λd−1 R. As discussed in [35], for every f ∈ R BV2(Rd), u := R f ∈M(Sd−1 × R)

is always even, i.e., u(γ, t) = u(−γ,−t). This means we have

R TV2(f) = ‖R f‖M(Pd),

where Pd denotes the manifold of hyperplanes on Rd. In particular, we can view M(Pd) as the
subspace ofM(Sd−1 × R) with only even finite Radon measures. Indeed, this is due to the fact
that every hyperplane takes the form h(γ,t) :=

{
x ∈ Rd : γTx = t

}
for some (γ, t) ∈ Sd−1 × R

and h(γ,t) = h(−γ,−t).
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Proposition A.4 (see [35, Lemma 21 and Theorem 22]). Let (φ,p) be a biorthogonal system
for P1(Rd). Then, every f ∈ R BV2(Rd) has the unique direct-sum decomposition

f = R−1
φ {u}+ q,

where u = R f ∈M(Pd), q =
∑d

k=0〈φk, f〉pk ∈ P1(Rd), and

(A.2) R−1
φ : u 7→

∫
Sd−1×R

gφ(·, z)u(z) d(σ × λ)(z),

where σ is the surface measure on Sd−1 and λ is the Lebesgue measure on R and

(A.3) gφ(x, z) = rz(x)−
d∑

k=0

pk(x)qk(z),

where rz = r(w,b) = ρ(wT(·) − b) and qk(z) := 〈φk, rz〉, where z = (w, b) ∈ Sd−1 × R and ρ

denotes any Green’s function of D2, the second derivative operator, e.g., ρ = max{0, ·} (the
ReLU) or ρ = |·|/2.

The operator R−1
φ defined in (A.2) has several useful properties (see [35, Theorem 22,

Items 1 and 2]). In particular, it is a stable (i.e., bounded) right-inverse of R, and when
restricted to

R BV2
φ(Rd) :=

{
f ∈ R BV2(Rd) : φ(f) = 0

}
,

it is the bona fide inverse of R. The space R BV2
φ(Rd) is also a concrete transcription of the

abstract quotient R BV2(Rd)/P1(Rd). We have that R : R BV2
φ(Rd)→M(Pd) is an isometric

isomorphism with inverse given by R−1
φ . Additionally we have from Proposition A.4 that

R BV2(Rd) ∼= R BV2
φ(Rd) ⊕ P1(Rd), where R BV2

φ(Rd) is a Banach space when equipped

with the norm f 7→ ‖R f‖M(Pd) and P1(Rd) is a Banach space when equipped with the norm
f 7→ ‖φ(f)‖1. These properties will be important in proving Item 2 of Lemma 2.5.

Proof of Lemma 2.5, Item 2. Let (φ,p) be the biorthogonal system constructed in the
proof of Lemma 2.5, Item 1. Since R BV2(Rd) ∼= R BV2

φ(Rd)⊕P1(Rd), showing that δ(· −x0),

x0 ∈ Rd, is weak∗ continuous on R BV2(Rd) is equivalent to showing that it is weak∗ continuous
on both R BV2

φ(Rd) and P1(Rd).

Clearly δ(· − x0), x0 ∈ Rd, is continuous on P1(Rd) (since every element of P1(Rd) is a
continuous function). Then, since P1(Rd) is finite-dimensional, the space of continuous linear
functionals and weak∗ continuous linear functionals are the same. Thus, δ(· − x0), x0 ∈ Rd, is
weak∗ continuous on P1(Rd).

It remains to show that δ(· − x0), x0 ∈ Rd, is weak∗ continuous on R BV2
φ(Rd). Let X be

the predual of R BV2
φ(Rd), i.e., X ′ = R BV2

φ(Rd). We must show that δ(· − x0) ∈ X for all

x0 ∈ Rd. The Riesz–Markov–Kakutani representation theorem says that the predual ofM(Pd)
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is C0(Pd). The following diagram shows how all these spaces are related.

R BV2
φ(Rd) M(Pd)

X C0(Pd)

R

R−1
φ

dual

R−1∗
φ

dual

R∗φ

The above diagram shows that δ(· − x0) ∈ X if and only if R−1∗
φ {δ(· − x0)} ∈ C0(Pd).

From Proposition A.4 we see that R−1∗
φ {δ(· − x0)} = gφ(x0, ·) defined in (A.3). By choosing

ρ = |·|/2 in (A.3) we have

gφ(x0, (w, b)) =
|wTx0 − b|

2
−

d∑
k=0

pk(x0)

〈
φk,
|wT(·)− b|

2

〉
(∗)
=
|wTx0 − b|

2
−

[
|−b|

2
+

d∑
k=1

x0,k

(
|wk − b|

2
− |−b|

2

)]

=
|wTx0 − b|

2
− |b|

2

(
1−

d∑
k=1

x0,k

)
−

d∑
k=1

x0,k
|wk − b|

2
,(A.4)

where (∗) follows by substituting in the biorthogonal system (φ,p) constructed in the proof
of Lemma 2.5, Item 1. Clearly gφ(x0, ·) is continuous and gφ(x0, (w, b)) = gφ(x0, (−w,−b)),
so gφ(x0, ·) is an even function on Sd−1 × R and therefore a continuous function on Pd. It
remains to check that gφ(x0, ·) is vanishing at infinity. Certainly this is true. Indeed, for
sufficiently large b we have

gφ(x0, (w, b)) =
−wTx0 + b

2
− b

2

(
1−

d∑
k=1

x0,k

)
−

d∑
k=1

x0,k
−wk + b

2
= 0,

and for sufficiently small b we have

gφ(x0, (w, b)) =
wTx0 − b

2
− −b

2

(
1−

d∑
k=1

x0,k

)
−

d∑
k=1

x0,k
wk − b

2
= 0.

Therefore, gφ(x0, ·) is compactly supported on Pd and so gφ(x0, ·) ∈ C0(Pd). Thus, the Dirac
impulse δ(· − x0), x0 ∈ Rd, is weak∗ continuous on R BV2(Rd).

Appendix B. Proof of Theorem 2.7. In order to prove Theorem 2.7, we require that
solutions to the variational problem in Theorem 2.7 exist. We will use the following recent
result regarding existence of solutions to variational problems over Banach spaces.
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Proposition B.1 (special case of [45, Theorem 2]). Let (X ,X ′) be a dual pair of Banach
spaces and {νn}Nn=1 ⊂ X be a collection of linearly independent measurement functionals. Then,
the solution set to

arg min
f∈X ′

‖f‖X ′ s.t. 〈νn, f〉 = yn, n = 1, . . . , N,

is nonempty, convex, and weak∗ compact, where 〈·, ·〉 denotes the pairing of X ′ and its
continuous dual, X ′′4.

Remark B.2. The result of [45, Theorem 2] is more general than what is stated in Proposi-
tion B.1, but we are only interested in the existence result in this paper.

Proof of Theorem 2.7. By Lemma 2.5, we have R BV2(Rd) is a Banach space and that
the functionals νn := δ(· − xn), n = 1, . . . , N , are weak∗ continuous on R BV2(Rd) (and
are therefore contained in the predual of R BV2(Rd)). Moreover, this choice of {νn}Nn=1 is
clearly linearly independent5. Therefore, the problem in (2.8) satisfies the hypotheses of
Proposition B.1 and so a solution to (2.8) exists. Let s̃ be a (not necessarily unique) solution
to (2.8). This solution must be a minimizer of

min
f∈R BV2(Rd)

R TV2(f) s.t.


f(xn) = yn, n = 1, . . . , N,

f(0) = s̃(0),

f(ek) = s̃(ek), k = 1, . . . , d.

By Proposition 2.1, there exists a solution to the above display that takes the form in (2.9)
with K ≤ N neurons, so we can always find a solution to the original problem in (2.8) of the
form in (2.9).

Appendix C. Proof of Theorem 2.12.

Proof. By Lemma 2.9, we have that R BV2(Rd;RD) is a Banach space and that the point
evaluation operator is component-wise weak∗ continuous on R BV2(Rd;Rd). Therefore, the
functionals

〈νn,m, f〉 = fm(xn), n = 1, . . . , N, m = 1, . . . , D,

where f = (f1, . . . , fD) ∈ R BV2(Rd;RD) and 〈·, ·〉 denotes the pairing of R BV2(Rd;RD)
and its continuous dual, are contained in the predual of R BV2(Rd;RD). Moreover, these
functionals are linearly independent6. Therefore, the problem in (2.11) satisfies the hypotheses
of Proposition B.1 and so a solution to (2.11) exists. Next, note that we can rewrite the
problem in (2.11) as

min
f=(f1,...,fD)

fm∈R BV2(Rd)
m=1,...,D

D∑
m=1

‖fm‖R BV2(Rd) s.t. fm(xn) = yn,m,

{
n = 1, . . . , N

m = 1, . . . , D,

4Note that νn ∈ X implies νn ∈ X ′′ by the canonical embedding of a Banach space in its bidual.
5Assuming that xn 6= xk for n 6= k.
6Assuming that xn 6= xk for n 6= k.
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where yn = (yn,1, . . . , yn,D) ∈ RD. Let s̃ = (s̃1, . . . , s̃D) be a (not necessarily unique) solution
to (2.11). From the above display we see that this solution must satisfy

(C.1) s̃m ∈ arg min
f∈R BV2(Rd)

‖f‖R BV2(Rd) s.t. f(xn) = yn,m, n = 1, . . . , N,

for m = 1, . . . , D. To see this, note that if the above display did not hold, it would contradict
the optimality of s̃. By Theorem 2.7, there exists a solution to the above display that takes the
form in (2.9) with Km ≤ N neurons. By combining these solutions into a single vector-valued
function with potential combining of neurons7 we see that there exists a solution to the original
problem in (2.11) that takes the form in (2.12) with K ≤ K1 + · · ·+KD ≤ ND neurons. If no
neurons combine, each vk is 1-sparse.

Remark C.1. One could also write a solution of (2.11) such that each output is completely
independent of any other output, i.e., the outputs are completely decoupled. This corresponds
to fitting the data with D separate single-hidden layer ReLU networks. This follows from the
fact that sm is a minimizer to the problem in (C.1). This corresponds to the representation in
(2.12) having each vk being 1-sparse.

Appendix D. Proof of Lemma 2.11. Before proving Lemma 2.11, we will first bound
the Lipschitz constant of functions in R BV2(Rd). To do this, we will rely on Proposition A.4
with the biorthogonal system constructed in the proof of Lemma 2.5 given in Appendix A. In
particular, Proposition A.4 provides the direct-sum decomposition of f ∈ R BV2(Rd) by

(D.1) f(x) =

∫
Sd−1×R

gφ(x, (w, b))u(w, b) dσ(w) db+ cTx+ c0,

with gφ as in (A.4). It can easily be checked that this decomposition has the property that

(D.2) ‖f‖R BV2(Rd) = ‖u‖M(Sd−1×R) + ‖c‖1 + |c0|,

and we refer the reader to [35, Theorem 22, Item 3] for more details.

Lemma D.1. Let f ∈ R BV2(Rd). Then, f is Lipschitz continuous and satisfies the Lip-
schitz bound

|f(x)− f(y)| ≤ ‖f‖R BV2(Rd) ‖x− y‖1.

Proof. We will first bound the Lipschitz constant of gφ(·, z) defined in (A.4), where

7This would happen in the event that s̃m and s̃`, m 6= `, shared a common neuron.
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z = (w, b) ∈ Sd−1 × R. For any x,y ∈ Rd,

|gφ(x, z)− gφ(y, z)| =

∣∣∣∣∣
∣∣wTx− b

∣∣
2

−
∣∣wTy − b

∣∣
2

− |b|
2

[(
1−

d∑
k=1

xk

)
−

(
1−

d∑
k=1

yk

)]
−

d∑
k=1

(xk − yk)
|wk − b|

2

∣∣∣∣∣
≤
∣∣ ∣∣wTx− b

∣∣− ∣∣wTy − b
∣∣ ∣∣

2

+

∣∣∣∣∣
d∑

k=1

(xk − yk)
|b|
2
−

d∑
k=1

(xk − yk)
|wk − b|

2

∣∣∣∣∣
≤
∣∣ ∣∣wTx− b

∣∣− ∣∣wTy − b
∣∣ ∣∣

2
+

d∑
k=1

|xk − yk|
| |b| − |wk − b| |

2

(∗)
≤
∣∣wTx−wTy

∣∣
2

+
d∑

k=1

|xk − yk|
|wk|

2

(§)
≤
‖w‖∞‖x− y‖1 + ‖w‖∞‖x− y‖1

2
(†)
≤ ‖x− y‖1

where (∗) holds from the reverse triangle inequality, (§) holds from Hölder’s inequality, and (†)
holds from the fact that ‖·‖∞ ≤ ‖·‖2 in finite-dimensional spaces combined with ‖w‖2 = 1.

Next, from (D.1) we have for any x,y ∈ Rd,

|f(x)− f(y)| ≤
∫
Sd−1×R

|g(x, (w, b))− g(y, (w, b))||u(w, b)| dσ(w) db+ |cT(x− y)|

≤
∫
Sd−1×R

‖x− y‖1|u(w, b)| dσ(w) db+ ‖c‖∞‖x− y‖1

≤ ‖u‖M(Sd−1×R)‖x− y‖1 + ‖c‖1‖x− y‖1
≤ ‖f‖R BV2(Rd) ‖x− y‖1,

where the third line follows from the fact that ‖·‖∞ ≤ ‖·‖1 in finite-dimensional spaces and
the fourth line follows from (D.2).

Proof of Lemma 2.11. Write f = (f1, . . . , fD). For any x,y ∈ Rd,

‖f(x)− f(y)‖1 =

D∑
m=1

|fm(x)− fm(y)|

≤

(
D∑

m=1

‖fm‖R BV2(Rd)

)
‖x− y‖1,

= ‖f‖R BV2(Rd;RD)‖x− y‖1,
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where the second line follows from Lemma D.1 and the third line follows from the definition of
‖·‖R BV2(Rd;RD) in Lemma 2.9.

Remark D.2. The Lipschitz bounds in Lemmas 2.11 and D.1 are by no means the tightest
Lipschitz bounds.
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[51] S. Zuhovickĭı, Remarks on problems in approximation theory, Mat. Zbirnik KDU, (1948), pp. 169–183.


	1 Introduction
	1.1 Contributions
	1.2 Connections to empirical studies in deep learning
	1.3 Related work
	1.4 Roadmap

	2 Preliminaries
	2.1 Scalar-valued single-hidden layer ReLU networks and variational problems
	2.2 Vector-valued single-hidden layer ReLU networks and variational problems

	3 A Representer Theorem for Deep ReLU Networks
	4 Applications to Deep Network Training and Regularization
	4.1 Connections to existing deep network regularization schemes.

	5 Conclusion
	Appendix A. Topological Properties of RBV2(Rd)
	Appendix B. Proof of Theorem 2.7
	Appendix C. Proof of Theorem 2.12
	Appendix D. Proof of Lemma 2.11

