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Thesis Abstract

Thesis Abstract

”Deep Learning”/”Deep Neural Nets” is a technological marvel that is now increasingly deployed
at the cutting-edge of artificial intelligence tasks. This ongoing revolution can be said to have been
ignited by the iconic 2012 paper from the University of Toronto titled “ImageNet Classification with
Deep Convolutional Neural Networks” by Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton.
This paper showed that deep nets can be used to classify images into meaningful categories with
almost human-like accuracies! As of 2020 this approach continues to produce unprecedented per-
formance for an ever widening variety of novel purposes ranging from playing chess to self-driving
cars to experimental astrophysics and high-energy physics. But this new found astonishing success
of deep neural nets in the last few years has been hinged on an enormous amount of heuristics and it
has turned out to be extremely challenging to be mathematically rigorously explainable. In this the-
sis we take several steps towards building strong theoretical foundations for these new paradigms of
deep-learning.

Our proofs here can be broadly grouped into three categories,

• Understanding Neural Function Spaces We show new circuit complexity theorems for deep
neural functions over real and Boolean inputs and prove classification theorems about these
function spaces which in turn lead to exact algorithms for empirical risk minimization for depth
2 ReLU nets.

We also motivate a measure of complexity of neural functions and leverage techniques from
polytope geometry to constructively establish the existence of high-complexity neural func-
tions.

• Understanding Deep Learning Algorithms We give fast iterative stochastic algorithms which
can learn near optimal approximations of the true parameters of a ReLU gate in the realizable
setting. (There are improved versions of this result available in our papers Mukherjee and
Muthukumar, 2020; Karmakar and Mukherjee, 2020 which are not included in the thesis.)

We also establish the first ever (a) mathematical control on the behaviour of noisy gradient
descent on a ReLU gate and (b) proofs of convergence of stochastic and deterministic versions
of the widely used adaptive gradient deep-learning algorithms, RMSProp and ADAM. This
study also includes a first-of-its-kind detailed empirical study of the hyper-parameter values
and neural net architectures when these modern algorithms have a significant advantage over
classical acceleration based methods.

• Understanding The Risk Of (Stochastic) Neural Nets We push forward the emergent tech-
nology of PAC-Bayesian bounds for the risk of stochastic neural nets to get bounds which are
not only empirically smaller than contemporary theories but also demonstrate smaller rates
of growth w.r.t increase in width and depth of the net in experimental tests. These critically
depend on our novel theorems proving noise resilience of nets.

This work also includes an experimental investigation of the geometric properties of the path in
weight space that is traced out by the net during the training. This leads us to uncover certain
seemingly uniform and surprising geometric properties of this process which can potentially
be leveraged into better bounds in future.
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“Study hard what interests you the most in the most undisciplined, irreverent, and original manner possible.”

- Richard Feynman
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An Informal Introduction to Deep Learning

An Informal Introduction to Deep Learning

We who speak Bengali owe an infinite debt to the legendary Satyajit Ray and it goes well beyond him
having given us the timeless movies that he created. Growing up in a typical Bengali household full
of books (on almost every conceivable subject!), maybe for many of us our first idea of “artifical intel-
ligence” can be traced to the friendly humanoids like Robu and Bidhushekhar which were created by
Professor Shonku in the famous series of stories penned by Satyajit Ray. In retrospect it was indeed
lucky that Professor Shonku happened in our lives much before we encountered the more ominous
view of robots as was made famous by Isaac Asimov’s “Three Laws of Robotics”. Ofcourse even
today in 2020 we are still nowhere close to what was imagined in Satyajit Ray’s fiction but something
has dramatically changed in the last 5−6 years. In this chapter we will try to get a feel of this ongo-
ing revolution while keeping the technical aspects low enough to be accessible within the scope of
high-school science. We should note at the very outset that opinions remains widely divided about
how we should perceive this recent upsurge and much of what we present here is obviously heavily
coloured by the technical parts of the thesis that will follow this chapter.

Maybe many of the readers have probably heard of the recent spectacular successes of “machines”
called AlphaZero in being able to play games like chess at unprecedented levels of proficiency. These
successes have revealed structures and possible strategies about the game of chess which had never
been seen before! But these forms of artificial intelligence (unfortunately!) do not look like Professor
Shonku’s robots. Turns out that anthropomorphism isnt of any particular advantage if we limit our
notions of intelligence to such abilities as required to play difficult strategy games like chess or poker
or being able to create new paintings which mimic the style of Vincent van Gogh or being able to flu-
ently translate between multiple languages. In the last couple of years suddenly these have become
possible to do in an automated way because of our new found ability to computationally leverage the
power of what are called “Deep Neural Networks” or DNNs or “neural nets” or “neural networks”
or sometimes just “nets”. The myriad of ways in which we can “train” a DNN to perform human-like
tasks are collectively called “Deep Learning”

It can be somewhat tedious to install on one’s home computer the (freely available) softwares like
TensorFlow or PyTorch and get a hands-on feel for the advanced applications of neural nets that
were mentioned above. The developers of these softwares continue to make progress to make the
installation processes increasingly easy so that more people can put this evolving technology to use.
Such efforts have led to the creation of platforms like “Google Colab” where one can write codes to
run small neural nets without having to install the full softwares. For immediate motivation let’s see
this incredibly beautiful (and mind-bogglingly surprising!) demonstration that is easily available on
this website, https://thispersondoesnotexist.com/. Every time we refresh this page we will be
shown a seemingly human photograph (which sometimes might have minor defects), just that this
photograph is completely artificially generated by a neural network! In a sense this person is purely
the net’s imagination and he/she does not actually exist! So how did the net manage to “draw” such
realistic human faces? This mechanism is still highly ill-understood and our best efforts at making
sense of this involves the branch of mathematics called “Optimal Transport”. This is the same field
of research for which Cedric Villani got the Fields Medal in 2010. This esoteric mathematical idea
of optimal transport has mysterious ramifications in the world of neural nets and we have possibly
only barely scratched the surface of this interface.

Though applications like the one described above about artificial generation of human-like faces are
the cutting-edge of applied research in neural nets, these are not the commonly used tests for theory.
There are more standardized artificial intelligence tasks on which we have decades of benchmarks of
performance and new techniques are often compared on those. One such task is of classifying images
into meaningful categories when the neural net (or in general any candidate “machine”) is input a
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high-dimensional vector representing the image. For comparison recall that its at about 9 months of
age that a human baby first starts being able to match daily life objects to their photographs. But the
nets are no match for babies! Babies can recognize a banana the next time even after having seen just
a single banana once. Unfortunately our best nets still need to see a lot of bananas before learning to
categorize it correctly when shown a new one! This human-machine gap is deeply mysterious and
an emerging direction of research.

There are two common datasets of images which are used for this test namely the “CIFAR” (Cana-
dian Institute For Advanced Research) database and the MNIST (“Modified National Institute of
Standards and Technology”) database. CIFAR dataset was created in 2009 by Alex Krizhevsky, Vinod
Nair, and Geoffrey Hinton. It contains millions of low resolution images grouped into thousands of
categories like birds, aeroplanes, cars etc. The task of the trained machine is to correctly predict the
category when a randomly picked image from this set is input to the machine. In the figure below
we have shown a sample of the MNIST dataset which contains images of hand-written digits from
0 to 9 and the task of the trained machine is to recognize the number correctly when shown a ran-
domly picked handwritten digit from the set. This was introduced and explored in the seminal paper
from 1998 called, “Gradient-Based Learning Applied to Document Recognition” written by some of
the biggest stalwarts in the field, Y. LeCun, L. Bottou, Y. Bengio and P. Haffner. And even today we
continue to use MNIST as a baseline for testing theory about classification tasks.

A small part of the famous MNIST database

Its worth pointing out that CIFAR is widely considered to be a much more difficult test than MNIST.
There are fundamental questions about being able to mathematically justify this difference in diffi-
culty and theory of this kind is still not fully developed. This brings us to a deep mystery that we
hardly understand as to when is an artificial intelligence task easy and when is it difficult! Research
is only beginning in this direction.

Now that we have seen some cutting-edge applications and methods of testing artificial intelligence
let us focus on understanding the specific implementation of DNNs that we are interested in.

DNNs have existed in some form or the other since the 1958 work by a psychologist at the Cornell
University named Frank Rosenblatt, who then called his idea “Perceptron”. Many might say that
our current way of thinking about neural nets comes from the famous 1986 paper titled ‘‘Learning

representations by back-propagating errors’’ by David Rumelhart, Ronald Williams and Ge-
offrey Hinton. Geoffrey E. Hinton is often credited to be the pioneer of deep learning and interest-
ingly Hinton too did his undergraduate studies in psychology! Its worth noting that despite the ideas
having been there since decades, till very recently we could never actually get nets to do anything
surprising in practice. This so-called “A.I winter” was finally ended in part by the recent dramatic de-
velopments in computer hardware. The ongoing artificial intelligence revolution can be said to have
been ignited by the iconic 2012 paper from University of Toronto titled ‘‘ImageNet Classification

with Deep Convolutional Neural Networks’’ by Alex Krizhevsky, Ilya Sutskever and Geoffrey E.
Hinton. This showed that deep nets can be used to classify images into meaningful categories with
almost human-like accuracies! Now lets try to understand what is the precise mathematical descrip-
tion of a DNN!

DNNs are what could be called “mathematical circuits”. These can be thought of as a certain peculiar
class of functions which are defined via diagrams which look like circuits. In school we get very
familiar with the physics of electrical circuits - which carry electrical potential. Mathematical circuits
are similar but instead their imagined wires carry algebraic instructions to multiply or add numbers
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to the input to the wire. We know that electrical circuits can be augmented to do more useful things by
embedding inside them “non-linear” components like resistors, capacitors and inductors. There are
called non-linear because the voltage drop across them is not a linear function of the current passing
through them. Similarly these DNNs have embedded inside them gates each of which is designed to
implement a certain “activation function” which is typically a non-linear function mapping the real
line to itself. The following diagram represents an example of such a single gate and is thus one of
the most elementary possible examples of a neural net.

The above neural gate will be said to use f : R → R as the activation function, to create a map/function
which takes as input any 3−dimensional vector (x1, x2, x3) and gives as output the real number,
f (w1x1 + w2x2 + w3x3). We think of the activation function at the gate f , to be getting as input the
linear sum, ∑3

i=1 wixi. These three real parameters above, w1, w2 and w3 are called the ‘weights’. Usu-
ally there are many wires coming out of the gate (instead of the single Y in the above) and in that case
the gate is defined to pass on the same value to all of them.

As of today almost all implementations of DNNs use the “Rectified Linear Unit (ReLU)”

ReLU : R → R

x ↦→ max{0, x}

To develop more intuition lets use the building blocks above to construct a net with a few more gates
which actually computes a familiar useful function.

Input x1

Input x2

x1+x2

2 + |x1−x2|
2

1

1

-1

-1

-1

1

1

-1

1
2

− 1
2

1
2

1
2

In the above we see an example of a “1-DNN” i.e. a DNN with one layer of gates indicated in blue.
The above neural network would be said to be of size 4 since it has 4 activation gates. Lets assume
that the activation function at these blue gates is the ReLU function defined above. Then we claim
that the above circuit is computing the R2 → R function given as (x1, x2) ↦→ max{x1, x2}. But how
do we convince ourselves that this is indeed what is happening? We can start with realizing that the
top most blue activation gate is getting as input the number x1 + x2 and this can be inferred from
the weights on its two incoming edges. (recall how the single gate was defined to operate in the
diagram on the previous page) Further one can read off from the weight on the outgoing edge of
this top most ReLU gate that it is passing on to the red output gate the number 1

2 max{0, x1 + x2}.
Thus if we carefully follow the computations happening on each edge and gate then we can conclude
that the mathematical circuit/neural net above is indeed computing the maximum of its two inputs.
Let’s see a specific example for check : say x1 = 2 and x2 = 5. Then the blue ReLU gates are getting
7,−7, 3 and −3 as inputs respectively, from the top most gate to the bottom most. These gates are
then passing on to the red output gate the numbers, 7

2 ,− 1
2 max{0,−7} = 0, 1

2 max{0, 3} = 3
2 and
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1
2 max{0,−3} = 0. Finally the red output gate is adding these up to give as output 7

2 + 3
2 = 5 which

is indeed max{2, 5}.

Later in the thesis in Chapter 2 we will prove that to compute the maximum of n numbers atmost
log(n) layers of activation are sufficient. In that same chapter we will study another useful class
of neural functions which have been very important in theory building. For some real numbers

w > 0 and a > 0 consider the function, f (x) = max
{︂

0, 1
w − 1

w2 × |x − a|
}︂

. Its easy to see that

this is zero everywhere except on the interval [a − w, a + w] where it rises up as a triangle peaked at
x = a. Now that we have seen the max function example above, one can try to solve the fun puzzle
of writing down a neural net with a single layer of activations which can represent this “triangle
wave” function. With some more tricks we will see in Chapter 2 that one can try to create nets which
will represent a wave form with multiple triangles. Interestingly its still unclear as to what is the
appropriate analogue of these waves in high-dimensions!

These nets which compute the maximum of their input numbers and the triangle waves above often
form the building blocks of how we think about the more complicated functions that the nets can
compute. In general questions about the representation power of a specific circuit/network design
can be extremely difficult to answer and in some cases the answers have required the use of very
sophisticated mathematics as we will see in Chapter 2. At the core of trying to explain cutting-edge
mind-boggling experiments cited earlier like https://thispersondoesnotexist.com/, there lies in
effect more advanced forms these kinds of questions about the function space of nets.

To see more advanced ideas we need to think more generally in terms of diagrams or “architectures”
: an example of which is given below. (For readers familiar with graph theory one can imagine the
underlying diagram to be that of a directed acyclic graph where all edges are pointing to the right.)

Unlike the previous two examples, in the above circuit no “weights” have been assigned to the edges
of the above graph. So one should think of this diagram as representing the entire set of all the
R4 → R3 functions which can be computed by the above architecture for a *fixed* choice of “activa-
tion functions” (like, ReLU as defined above) at each of the blue nodes and for all possible values of
weights/real-numbers that can be assigned to the edges. The 4 yellow nodes are where a 4− dimen-
sional input vector will go in as input and the 3 orange nodes are where the 3−dimensional output
vector will come out. Unlike the previous diagrams where every edge carried a single real number,
in general every edge can be assigned two real numbers/weights/parameters say (a, b). It is to be
understood as specifying that when that edge gets a real number say x as input on its left end then
it will give the number ax + b as the output on its right end. Thus the total number of parameters
specifying a neural function can be at most twice the number of edges. Some of the largest nets in op-
eration today (called “AmoebaNet-D”) have 600 million parameters. For comparison recall that the
human brain has about 60−80 billion neurons and each of them have about 104 synaptic connections
to other neurons. This might motivate one to say that these nets which hope to model intelligence
are still quite small in comparison to the human brain!

The above diagram would be said to represent a class of neural functions with 5 “layers” of activa-
tions, the blue nodes. We recall that the function we had seen earlier, f (x1, x) = max{x1, x2} was
such that it could be represented using just 1 layer of activation. In this context it is worth pointing
out that we still don’t know if say the maximum of 5 numbers can be computed using 2 layers of
gates or does it necessarily need 3 such layers of gates!

Now that we have started to think in terms of architectures we end this chapter by pointing out that
a very crucial unresolved issue here is to be able to understand, that of all the functions that can be
well approximated by a chosen architecture, how many of them show rapid oscillations - like imagine
the triangle-wave that we saw earlier but with many (but finite) number of triangles.
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This was just the tip of the iceberg and there is a lot more to this story. Lets get a quick glimpse of
some of that! In deep-learning we will often assume that the actual artificial intelligence task that one
desires to accomplish can be reformulated as trying to minimize some real valued function which is
often called the “loss function”. Our ever increasing experience is that with enough ingenuity one
can often write the correct loss function - which will capture the original question as a function which
maps the space of functions of a neural architecture (and available data) to non-negative real num-
bers. And as one might expect we try to minimize the loss function over the space of weights of the
net (and hence over the space of functions represented by the given architecture) by approximately
moving along the local gradients of the loss function. Thus it is immensely critical that we choose
the right architecture - and this is currently almost a form of art! Research is only beginning in this
direction of finding systematic methods for making a good choice of architecture. Even after an archi-
tecture has been chosen we are faced with the massive question of actually doing this search through
its space of functions/weights of the net to find the minimum of the loss.

In the description above we have so far hidden an immense complication which we now necessarily
need to confront - that in actual practice information about this loss function is often only partially
known! In general this is a very complicated question about searching for an optimal function in a
function space while being guided only by a crude estimate of the true optimality criteria. This brings
us to the vast field of “stochastic optimization” - and we will see many provable avatars of this in this
thesis.

We hope that the appetite of the reader has been adequately whetted and at this point they might
want to read some of the recently released books on deep-learning like these three freely avail-
able beautiful texts, which give a magnificent overview of this exciting new subject https://www.
deeplearningbook.org/, d2l.ai and https://mjt.cs.illinois.edu/dlt/ .
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Chapter 1
A Summary of the Results in This Thesis

Deep learning has brought about a paradigm shift in our quest for general artificial intelligence (Le-
Cun, Bengio, and Hinton, 2015). Powered by concurrent technological advances neural nets have
in recent times beaten all previous benchmarks in playing hard strategy games like chess and Go,
(Silver et al., 2017; Silver et al., 2018) and have also radically pushed forward the technology towards
self-driving cars (Fridman et al., 2017). But on the other hand the methods employed to make deep
learning practical remain highly mysterious and challenging to prove guarantees about. During my
PhD. I have been extremely passionate about figuring out mathematically rigorous ways to under-
stand deep-learning. We begin to give a summary of the results obtained by first setting up the
mathematical notation needed to talk about nets.

1.1 Defining Deep Neural Nets

The crucial component that goes into defining a neural net is the “activation function”, often denoted
as σ. Historically the σ that was in vogue at the beginning of the subject was the “sigmoid function”,
R ∋ x ↦→ σ(x) = 1

1+e−λx for some λ > 0. But for almost all applications of neural nets today it seems
that the most widely used activation function is the “Rectified Linear Unit (ReLU)”

ReLU : R → R

x ↦→ max{0, x}

In standard practice the notion of ReLU is overloaded to denote the following function operating
entrywise, ReLU : Rn ∋ x ↦→ (max{0, x1}, max{0, x2}, . . . , max{0, xn}) ∈ Rn

Definition 1. [ReLU DNNs] Given k, w0, w1, w2, . . . , wk, wk+1 ∈ N, one defines a depth k + 1 “ReLU
Deep Neural Net (DNN)” as the following function,

Rw0 ∋ x ↦→ f (x) = Ak+1 ◦ ReLU ◦Ak ◦ · · · ◦ A2 ◦ ReLU ◦A1 ∈ Rwk+1 (1.1)

where Ai : Rwi−1 → Rwi for i = 1, . . . , k + 1 is a set of k + 1 affine transformations. The positive
integers w1, . . . , wk are said to specify the widths of the hidden layers or layers of activation. The number
max{w1, . . . , wk} is called the width of this ReLU DNN. The size of the ReLU DNN is defined to be
the number of univariate activation gates used and that can be easily seen to be w1 + w2 + . . . + wk.

Such a ReLU DNN is sometimes also called a (k + 1)-layer ReLU DNN, and is said to have k hidden
layers. Number of layers or depth of the net can be seen to be measuring as the length of the shortest
path from the input to the output of the directed acyclic graph that naturally represents such a neural
network - of which we have already seen examples in the previous chapter on informal summary
and we see another in Figure 1.1 given below.

For any (m, n) ∈ N, let An
m adenote the class of affine and affine transformations from Rm → Rn,

respectively. Thus we introduce a compact notation for the class of width specified DNNs as follows,

1
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Definition 2. We denote the class of Rw0 → Rwk+1 ReLU DNNs with k hidden layers of widths
{wi}k

i=1 by F{wi}k+1
i=0

, i.e.

F{wi}k+1
i=0

:= {Ak+1 ◦ ReLU ◦Ak ◦ · · · ◦ A2 ◦ ReLU ◦A1 | Ai ∈ A
wi
wi−1∀i ∈ {1, . . . , k + 1}} (1.2)

Corresponding to any affine transformation Ai above we will typically decompose its action via a
linear transformation (“weight matrix”) Wi and a vector bi s.t x ↦→ Aix = Wix+bi. This is particularly
helpful in setting up the notation for a particular class of neural nets “Autoencoders” that we shall
often consider in this thesis and which we specify below.

1.1.1 Notation for a special class of Autoencoders

Let y ∈ Rn be the input vector to the autoencoder, {Wi}i=1,..,ℓ denote the weight matrices of the net
and {bi}i=1,..,2ℓ be the bias vectors. Then the output ŷ ∈ Rn of the autoencoder (mapping Rn → Rn)
is defined as,

ŷ = W⊤
1 σ(. . . σ(W⊤

ℓ−1σ(W⊤
ℓ a + bℓ+1) + bℓ+2) . . . ) + b2ℓ

where

a = σ(Wℓσ(. . . σ(W2σ(W1y + b1) + b2) . . . ) + bℓ)

This defines an autoencoder with 2ℓ − 1 hidden layers using the ℓ weight matrices and the 2ℓ bias
vectors defined above. The particular symmetry that has been imposed among the layers leading up
to the a and those that act on a is what leads to this arrangement being called “weight tied”. Such
autoencoders are a fairly standard setup that have been used in previous work (Arpit et al., 2015;
Baldi, 2012; Kuchaiev and Ginsburg, 2017; Vincent et al., 2010).

A special case of the above that we shall focus on is when ℓ = 1 i.e its a weight tied autoencoder of
depth 2 and b2 = 0. We shall use W = W1, b1 = ϵ ∈ Rh where h is the width of the net and the
number of activation units used. Denoting the output of the hidden layer of activations as r ∈ Rh we
have for this case,

ŷ = WTr where r = ReLU (Wy − ϵ) (1.3)

We shall define the columns of W⊤ (rows of W) as {Wi}h
i=1. A pictorial representation of such a depth

2 autoencoder is as given in Figure 1.1.

FIGURE 1.1: The above is the circuit representation of a depth 2, width 15 autoencoder
mapping, R4 ∋ y ↦→ ŷ ∈ R4
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Deep learning, refers to a suite of computational techniques that have been developed recently for
training DNNs. It started with the work of Hinton, Osindero, and Teh, 2006 (deep belief networks)
and Salakhutdinov and Hinton, 2009 (deep Boltzmann machines) which gave empirical evidence
that if deep architectures are initialized properly (for instance, using unsupervised pre-training), then
we can find good solutions in a reasonable amount of runtime. This work was soon followed by a
series of early successes of deep learning at significantly improving the state-of-the-art AI systems
in speech recognition, image classification and natural language processing based on deep neural
nets (Hinton et al., 2012; Dahl, Sainath, and Hinton, 2013; Krizhevsky, Sutskever, and Hinton, 2012;
Le, 2013; Sutskever, Vinyals, and Le, 2014). While there is less of evidence now that pre-training actu-
ally helps, several other solutions have since been put forth to address the issue of efficiently training
DNNs. These include heuristics such as dropouts (Srivastava et al., 2014), but also considering alter-
nate deep architectures such as convolutional neural networks (Sermanet et al., 2014)

One of the fascinating aspects of trying to build a theory for deep-learning is that if we view this
project through the lens of optimization theory then its setup is essentially opposite to how theory
of optimization is studied in standard textbooks and courses. Typically one starts off with a well
defined optimization problem (like Conic Programming) and then one studies the properties of its
optima and the algorithmic aspects of solving it. But deep-learning has developed entirely on the
sturdy shoulders of thousands of highly innovative experimenters who have caused this artificial
intelligence revolution by developing a vast array of mysterious heuristics which work to get the
neural net to perform tasks which would be ”human like”. To give an obvious example : there is
no unambiguous way to quantify the fact that state-of-the-art GAN outputs look like realistic images
but this is exactly the criteria we would want to use to judge whether a GAN has been trained well or
not! As a subject deep-learning is predominantly defined by wildly successful algorithmic heuristics
and often it’s entirely unclear as to how the obviously wonderful performance of the trained net can
be described as finding good solutions of some optimization problem! For some of the most exotic
applications of neural nets, the debates continue to happen about what is the right optimization
problem whose solution would correctly capture the success of the net.

But if we can agree about the “loss function (say ℓ)” to be used then at least for the most ordinary
use cases the challenge of modern deep learning can be abstracted out as a particularly hard case of
usual “learning theory”. In such benign situations we can focus on wanting to solve the following
function optimization/“risk minimization” question,

min
N∈N

Ez∈D[ℓ(N, z)] (1.4)

where ℓ is some lower-bounded non-negative function, members of N are continuous piecewise lin-
ear functions representable by some chosen neural net architecture and we only have sample access
to the distribution D. This reduces to the “empirical risk minimization” question when this D is an
uniform distribution on a finite set of points. In the light of the previous discussion, the research
results presented in this thesis can be seen to be focused on the following 3 critical aspects, (a) un-
derstanding mathematical properties of the neural function spaces on which this risk minimization
is being attempted (Section 1.2), (b) proving guarantees about algorithms which can be used to ap-
proximately solve this question of neural risk minimization (Section 1.3) and (c) understanding the
structure of the nets which are solutions to such risk minimization questions (Section 1.4)

1.2 Understanding the space of neural functions

In Chapter 2 we provide 3 main kinds of insights about the nature of neural functions. Firstly, we
extend the recently published results in Telgarsky, 2016a to show that for every k ∈ Z+ there exists
a continuum of hard functions which require O(k3) size to represent at depths 1 + k2 but will require
Ω(kk) (super-exponential in depth) size to approximate at depth 1 + k. We also show that a kind
of polytopes, called “zonotopes” have a natural relationship to neural nets i.e the ReLU nets can
represent the gauge function of zonotopes and this in turn gives us an explicit construction of a
continuum of ReLU functions with the largest number of affine pieces for large classes of architectures.

Secondly, we were intrigued by the question of finding non-trivial upperbounds on the run-time of
algorithms which can find the exact global minima of empirical risk. We show how a collection of con-
vex programming subroutines can be used to get algorithms for exact empirical risk minimization
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in depth 2 which run in poly(data) time at a fixed depth. Such faster-than-brute-force exact opti-
mization algorithms remain unknown for higher depths. (Recently there has been a very interesting
complexity theoretic paper from Berkeley, Manurangsi and Reichman, 2018 which builds further on
this algorithm of ours.)

Lastly, we also investigate depth hierarchy theorems for ReLU nets (ending in a “Linear Threshold
Function” (LTF) gate which maps R ∋ y ↦→ −1 + 21y≥0 ∈ R) trying to compute Boolean functions.
Many of the key results in this direction were achieved by extending to ReLU nets a method of
random restrictions recently developed by Daniel Kane and Ryan Williams. This line of investigation
has thrown up a lot of puzzling open questions about whether or not ReLU nets are more efficient at
representing Boolean functions than usual Boolean circuits.

1.3 Landscape of neural nets and deep-learning algorithms

This theme is what can be said to be the mainstay of this thesis and it spans across 3 chapters.

In Chapter 3 we show 2 kinds of insights about training a ReLU gate. Firstly we give a very simple
iterative stochastic algorithm to recover the underlying parameter w∗ of the ReLU gate when realiz-
able data allowed to be sampled online is of the form (x, max{0, w⊤∗ x}). Compared to all previous
such attempts the distributional condition we use is very mild, which essentially just captures the
intuition that enough of our samples have to be such that w⊤∗ x > 0.

Secondly we give an argument which establishes a first-of-its-kind mathematical control on the be-
haviour of gradient descent (with deliberate injection of noise) on the squared loss function of a
single ReLU gate. It is to be noted that this argument doesn’t need any distributional assumption
beyond realizability of the labels and thus it makes us optimistic that this is a potentially interesting
step towards explaining the success of this ubiquitously used heuristic. The key idea here is that of
“coupling” which shows that from the iterates of noise injected gradient descent on the squared loss
of a ReLU gate one can create a discrete super-martingale.

In Chapter 4 we focus on autoencoders and make progress about explaining their success. We were
particularly inspired by the experimental works of Brendan Frey and Alireza Makhzani. We checked
that actually an off-the-shelf RMSProp algorithm very easily do reasonably good autoencoding on
MNIST even at depth 2. This piqued our interest to understand this better and we analyzed the
landscape of the autoencoder under the usual sparse-coding generative model. Via a very elaborate
analysis we are able to estimate the value of the gradient of the squared loss on depth 2 autoencoders
whose input/output dimension is the same as that of the observed vectors in sparse-coding and the
width of the network is the same as the sparse-code dimension.

This intricate analysis leads to the insight that the norm of this gradient decreases in a small neigh-
bourhood of the original (unknown) dictionary as the sparse-code dimension increases. Such a
proof of asymptotic criticality around the dictionary takes a step towards explaining why neural
nets should be able to do dictionary learning. Works like Nguyen, Wong, and Hegde, 2019 have
recently built on top of our analysis framework to show trainability proofs for autoencoders.

In Chapter 5 we focus on understanding the specific adaptive gradient algorithms, RMSProp and
ADAM, which are implemented widely across almost all deep-learning tasks and are known to be
the state-of-the-art in almost every application. We give the first ever proofs that (deterministic)
RMSPRop and (deterministic) ADAM converge to criticality for smooth objectives without the as-
sumption of convexity. We also motivate a class of first order moment constrained oracles in the
presence of which we can show the first ever proof of convergence of stochastic RMSProp with no
convexity assumptions and at the same speed as SGD on convex functions.

We emphasize that this is particularly exciting in the context of recent results Reddi, Kale, and Kumar,
2018 which have shown that under the same setting of constant hyperparameter values ADAM used
as an online optimizer cannot always get asymptotically zero average regret. We also shown exten-
sive experiments on VGG-9 running on CIFAR-10 and across various sizes of autoencoders running
on MNIST that ADAM’s performance gets a consistent and curious boost (and thus it outperforms
its competitors) when its β1 (the parameter that controls the influence of the history of grdients on
the current update) is pushed closer to 1 than its usual settings.
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1.4 Estimating the risk function of neural nets

The long standing open-question in deep-learning is to be able to theoretically explain as to when
neural nets which are massively over-parameterized happen to be high-quality solutions of the risk
minimization problem defined in 1.4 - even when they fit the training data arbitrarily accurately. In
recent times it has been increasingly realized that good risk bounds possibly necessarily need to de-
pend on the training algorithm as well as the training data. The currently available methods to bound
the risk function have been beautifully reviewed in this paper (Audibert and Bousquet, 2007). Here
the authors have clubbed the techniques into primarly four categories, (1) “Supremum Bounds” (like
generic chaining, Dudley integral, Rademacher complexity), (2) “‘Variance Localized Bounds”, (3)
“Data-Dependent Bounds” and (4) “Algorithm Dependent Complexity”. The last category includes
PAC-Bayes bounds which have risen to prominence in recent times and is the crux of our most re-
cently completed work described in Chapter 6

Rademacher complexity based bounds like Golowich, Rakhlin, and Shamir, 2018 and Bartlett, Foster,
and Telgarsky, 2017 fail to give non-vacuous bounds when evaluated on the gigantic neural nets used
in practice. In the PAC-Bayesian framework we slightly move away from trying to bound the risk
and instead we try to bound an instance of “stochastic risk” which can be thought of as allowing for
the neural net’s weights/parameters to be noisy. This can be argued to be the most natural quantity
to bound given that all successful neural training algorithms are stochastic and hence the trained net
obtained from it is essentially a sample from a distribution on the neural function space induced by
the training algorithm. By doing this shift in viewpoint, recent works like Dziugaite and Roy, 2017
and Zhou et al., 2018b have shown for the very first time that PAC-Bayesian bounds can give non-
trivial risk bounds for practical neural nets. But the above bounds are “computational” in the sense
that obtaining them requires an algorithmic search over a certain parametric space of distributions.
These experiments strongly motivate our current work seeking rigorous theoretical exploration of
the power of PAC-Bayesian technology in explaining the learning ability of neural nets.

Previous PAC-Bayes bounds have used data dependent priors on the geometric mean of the spectral
norms of the layer matrices to try to track the distance in the parameter space of the trained net
from a fixed point in that space. In our work the first key idea we initiate is to track the distance
of the trained net from its initialization by looking at two independent quantities (a) a non-compact
parameter : the change from initialization of the norm of the vector of weights of the net (i.e the sum
of Frobenius norms of the layer matrices for a net without bias weights) and (b) a compact part : the
angular deflection of this vector of weights from initialization to the end of training. In this work we
instantiate an elaborate mechanism of putting a two indexed grid of priors which can simultaneously
be sensitive to both the above properties of the neural net training process.

Our second key idea is to realize that in the PAC-Bayesian framework one can leverage more out of
the angle parameter by also simultaneously training a cluster of nets which are initialized close to the
original net. Because of this use of clusters, compared to previous bounds our dependency on the
distance from initialization is not only more intricate but we are also able to get more sensitive to the
average case behaviour.

Compared to previous theories in this direction, (Neyshabur et al., 2017) we build into the formalism
a larger number of data-dependent (and hence tunable) parameters. As a consequence we get a risk
bound on nets which is empirically not only seen to be tighter than Neyshabur et al., 2017 but also
has better/lower “rates” of dependency on the neural architectural parameters like depth and width.

We emphasize that the aforesaid ability to leverage the use of clusters of nets in tandem is critically
hinged on us being able to prove methods of creating multi-parameter families of mixture of Gaus-
sian distributions such that the given neural function remains stable when its weights are perturbed
by noise sampled from these distributions. There are potentially far reaching implications of such
theorems because of the intricate arguments made in recent times which motivate why finding prov-
able compression algorithms for any class of nets is tied to being able to prove the existence of noise
distributions to which this same class is resilient.

We go on to demonstrate two kinds of insights in our experiments. Over synthetic data and standard
tests like CIFAR-10 we show that our bound performs consistently better than existing PAC-Bayesian
bounds. Next we show in the experiments that the two parameters said above have a lot more
structure than what theory is currently capable of leveraging. We observe in our experiments that the
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2−norm of the weight vector described above always undergoes a slight dilation during the training.
We also demonstrate that the angular deflection is predominantly determined by the underlying
data-set/data-distribution and is only very slightly affected by the architecture of the net.

Current wisdom in the field suggests that observations like above about systematic behaviours of
neural net training can potentially be leveraged into increasingly creative risk bounds for nets. Thus
these experiments pave the way for our continuing exploration of even better bounds which can
eventually lead to principled methods of choosing the right net to use for a given artificial intelligence
task at hand.
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Chapter 2
Exploring the Space of Neural Functions

2.1 Introduction

Neural networks with a single hidden layer of finite size can approximate any continuous function
on a compact subset of Rn arbitrary well. This universal approximation result was first given for
sigmoidal activation function in Cybenko, 1989, and later generalized by Hornik to an arbitrary
bounded and non-constant activation function (Hornik, 1991) (and in turn it applied to ReLU nets as
well). Furthermore, neural networks ending in a LTF gate have finite VC dimension (depending poly-
nomially on the number of edges in the network), and therefore, are PAC (Probably Approximately
Correct) learnable using a sample of size that is polynomial in the size of the networks (Anthony and
Bartlett, 1999). However, neural networks based methods were shown to be computationally hard to
learn (Anthony and Bartlett, 1999) and had mixed empirical success. Consequently, DNNs fell out of
favor by the late 90s.

In this chapter, we formally study deep neural networks with rectified linear units; we refer to these
deep architectures as ReLU DNNs. Our work is inspired by these recent attempts to understand the
reason behind the successes of deep learning, both in terms of the structure of the functions repre-
sented by DNNs, (Telgarsky, 2015; Telgarsky, 2016b; Kane and Williams, 2015; Shamir, 2016), as well
as efforts which have tried to understand the non-convex nature of the training problem of DNNs
better (Kawaguchi, 2016; Haeffele and Vidal, 2015). Our investigation of the function space repre-
sented by ReLU DNNs also takes inspiration from the classical theory of circuit complexity; we refer
the reader to Arora and Barak, 2009; Shpilka and Yehudayoff, 2010; Jukna, 2012; Saptharishi, 2014;
Allender, 1998 for various surveys of this deep and fascinating field. In particular, our gap results
are inspired by results like the ones by Hastad Hastad, 1986, Razborov Razborov, 1987 and Smolen-
sky Smolensky, 1987 which show a strict separation of complexity classes. We make progress towards
similar statements with deep neural nets with ReLU activation.

2.1.1 Notation and Definitions

Definition 3. [Piecewise linear functions] We say a function f : Rn → R is continuous piecewise linear
(PWL) if there exists a finite set of polyhedra whose union is Rn, and f is affine linear over each
polyhedron (note that the definition automatically implies continuity of the function because the
affine regions are closed and cover Rn, and affine functions are continuous). The number of pieces of f
is the number of maximal connected subsets of Rn over which f is affine linear (which is finite).

Many of our important statements will be phrased in terms of the following simplex.

Definition 4. Let M > 0 be any positive real number and p ≥ 1 be any natural number. Define the
following set:

∆p
M := {x ∈ Rp : 0 < x1 < x2 < . . . < xp < M}.

7
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2.2 Exact characterization of function class represented by ReLU
DNNs

One of the main advantages of DNNs is their representational ability. In this section, we give an exact
characterization of the functions representable by ReLU DNNs. Moreover, we show how structural
properties of ReLU DNNs, specifically their depth and width, affects their expressive power. It is
clear from definition that any function from Rn → R represented by a ReLU DNN is a continuous
piecewise linear (PWL) function. In what follows, we show that the converse is also true, that is any
PWL function is representable by a ReLU DNN. In particular, the following theorem establishes a
one-to-one correspondence between the class of ReLU DNNs and PWL functions.

Theorem 2.2.1. Every Rn → R ReLU DNN represents a piecewise linear function, and every piece-
wise linear function Rn → R can be represented by a ReLU DNN with at most ⌈log2(n + 1)⌉ + 1
depth.

Proof Sketch: It is clear that any function represented by a ReLU DNN is a PWL function. To see the
converse, we first note that any PWL function can be represented as a linear combination of piecewise
linear convex functions. More formally, by Theorem 1 in (Wang and Sun, 2005), for every piecewise
linear function f : Rn → R, there exists a finite set of affine linear functions ℓ1, . . . , ℓk and subsets
S1, . . . , Sp ⊆ {1, . . . , k} (not necessarily disjoint) where each Si is of cardinality at most n + 1, such
that

f =
p

∑
j=1

sj

(︃
max
i∈Sj

ℓi

)︃
, (2.1)

where sj ∈ {−1,+1} for all j = 1, . . . , p. Since a function of the form maxi∈Sj ℓi is a piecewise
linear convex function with at most n + 1 pieces (because |Sj| ≤ n + 1), Equation (2.1) says that any
continuous piecewise linear function (not necessarily convex) can be obtained as a linear combination
of piecewise linear convex functions each of which has at most n + 1 affine pieces. Furthermore,
Lemmas 2.A.2, 2.A.3 and 2.A.4 in the Appendix, show that composition, addition, and pointwise
maximum of PWL functions are also representable by ReLU DNNs. In particular, in Lemma 2.A.4
we note that max{x, y} = x+y

2 + |x−y|
2 is implementable by a two layer ReLU network and use this

construction in an inductive manner to show that maximum of n+ 1 numbers can be computed using
a ReLU DNN with depth at most ⌈log2(n + 1)⌉.

While Theorem 2.2.1 gives an upper bound on the depth of the networks needed to represent all
continuous piecewise linear functions on Rn, it does not give any tight bounds on the size of the
networks that are needed to represent a given piecewise linear function. For n = 1, we give tight
bounds on size as follows:

Theorem 2.2.2. Given any piecewise linear function R → R with p pieces there exists a 2-layer DNN
with at most p nodes that can represent f . Moreover, any 2-layer DNN that represents f has size at
least p − 1.

Finally, the main result of this section follows from Theorem 2.2.1, and well-known facts that the
piecewise linear functions are dense in the family of compactly supported continuous functions
and the family of compactly supported continuous functions are dense in Lq(Rn) (Royden and Fitz-
patrick, 2010)). Recall that Lq(Rn) is the space of Lebesgue integrable functions f such that

∫︁
| f |qdµ <

∞, where µ is the Lebesgue measure on Rn (see Royden Royden and Fitzpatrick, 2010).

Theorem 2.2.3. Every function in Lq(Rn), (1 ≤ q ≤ ∞) can be arbitrarily well-approximated in the
Lq norm (which for a function f is given by || f ||q = (

∫︁
| f |q)1/q) by a ReLU DNN function with

at most ⌈log2(n + 1)⌉ hidden layers. Moreover, for n = 1, any such Lq function can be arbitrarily
well-approximated by a 2-layer DNN, with tight bounds on the size of such a DNN in terms of the
approximation.
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Proofs of Theorems 2.2.2 and 2.2.3 are provided in Appendix 2.A. We would like to remark that
a weaker version of Theorem 2.2.1 was observed in Goodfellow et al., 2013, Proposition 4.1 (with
no bound on the depth), along with a universal approximation theorem (Goodfellow et al., 2013,
Theorem 4.3) similar to Theorem 2.2.3. The authors of Goodfellow et al., 2013 also used a previous
result of Wang (Wang, 2004) for obtaining their result. In a subsequent work Boris Hanin (Hanin,
2017) has, among other things, found a width and depth upper bound for ReLU net representation of
positive PWL functions on [0, 1]n. The width upperbound is n+3 for general positive PWL functions
and n + 1 for convex positive PWL functions. For convex positive PWL functions his depth upper
bound is sharp if we disallow dead ReLUs.

2.3 Benefits of Depth

Success of deep learning has been largely attributed to the depth of the networks, i.e. number of
successive affine transformations followed by nonlinearities, which is shown to be extracting hierar-
chical features from the data. In contrast, traditional machine learning frameworks including support
vector machines, generalized linear models, and kernel machines can be seen as instances of shallow
networks, where a linear transformation acts on a single layer of nonlinear feature extraction. In this
section, we explore the importance of depth in ReLU DNNs. In particular, in Section 2.3.1, we provide
a smoothly parametrized family of R → R “hard” functions representable by ReLU DNNs, which
requires exponentially larger size for a shallower network to represent. Furthermore, in Section 2.3.2,
we construct a continuum of Rn → R “hard” functions representable by ReLU DNNs, which to the
best of our knowledge is the first explicit construction of ReLU DNN functions whose number of
affine pieces grows exponentially with input dimension.

2.3.1 Circuit lower bounds for R → R ReLU DNNs

In this section, we are only concerned about R → R ReLU DNNs, i.e. both input and output dimen-
sions are equal to one. The following theorem shows the depth-size trade-off in this setting.

Theorem 2.3.1. For every pair of natural numbers k ≥ 1, w ≥ 2, there exists a family of “hard”
functions representable by a R → R (k + 1)-layer ReLU DNN of width w such that if it is also
representable by a (k′ + 1)-layer ReLU DNN for any k′ ≤ k, then this (k′ + 1)-layer ReLU DNN has

size at least 1
2 k′w

k
k′ − 1.

In fact our family of hard functions described above has a very intricate structure as stated below.

Theorem 2.3.2. For every k ≥ 1, w ≥ 2, every member of the family of hard functions in Theorem 2.3.1
has wk pieces and this family can be parametrized by⋃︂

M>0
(∆w−1

M × ∆w−1
M × . . . × ∆w−1

M )⏞ ⏟⏟ ⏞
k times

, (2.2)

i.e., for every point in the set above, there exists a distinct function with the stated properties.

The following is an immediate corollary of Theorem 2.3.1 by choosing the parameters carefully.

Corollary 2.3.3. For every k ∈ N and ϵ > 0, there is a family of functions defined on the real line
such that every function f from this family can be represented by a (k1+ϵ) + 1-layer DNN with size
k2+ϵ and if f is represented by a k + 1-layer DNN, then this DNN must have size at least 1

2 k · kkϵ − 1.

Moreover, this family can be parametrized as, ∪M>0∆k2+ϵ−1
M .

A particularly illuminative special case is obtained by setting ϵ = 1 in Corollary 2.3.3:

9
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Corollary 2.3.4. For every natural number k ∈ N, there is a family of functions parameterized by the
set ∪M>0∆k3−1

M such that any f from this family can be represented by a k2 + 1-layer DNN with k3

nodes, and every k + 1-layer DNN that represents f needs at least 1
2 kk+1 − 1 nodes.

Towards proving the above two theorems we first need the following definition and lemma,

Definition 5. For p ∈ N and a ∈ ∆p
M, we define a function ha : R → R which is piecewise linear over

the segments (−∞, 0], [0, a1], [a1, a2], . . . , [ap, M], [M,+∞) defined as follows: ha(x) = 0 for all x ≤ 0,
ha(ai) = M(i mod 2), and ha(M) = M − ha(ap) and for x ≥ M, ha(x) is a linear continuation of the
piece over the interval [ap, M]. Note that the function has p + 2 pieces, with the leftmost piece having
slope 0. Furthermore, for a1, . . . , ak ∈ ∆p

M, we denote the composition of the functions ha1 , ha2 , . . . , hak

by
Ha1,...,ak := hak ◦ hak−1 ◦ . . . ◦ ha1 .

Lemma 2.3.5. For any M > 0, p ∈ N, k ∈ N and a1, . . . , ak ∈ ∆p
M, if we compose the functions

ha1 , ha2 , . . . , hak the resulting function is a piecewise linear function with at most (p + 1)k + 2 pieces,
i.e.,

Ha1,...,ak := hak ◦ hak−1 ◦ . . . ◦ ha1

is piecewise linear with at most (p + 1)k + 2 pieces, with (p + 1)k of these pieces in the range [0, M]
(see Figure 2.1). Moreover, in each piece in the range [0, M], the function is affine with minimum
value 0 and maximum value M.

Proof. Simple induction on k.

Proof of Theorem 2.3.2. Given k ≥ 1 and w ≥ 2, choose any point

(a1, . . . , ak) ∈
⋃︂

M>0
(∆w−1

M × ∆w−1
M × . . . × ∆w−1

M )⏞ ⏟⏟ ⏞
k times

.

By Definition 5, each hai , i = 1, . . . , k is a piecewise linear function with w + 1 pieces and the leftmost
piece having slope 0. Thus, by Corollary 2.A.1, each hai , i = 1, . . . , k can be represented by a 2-layer
ReLU DNN with size w. Using Lemma 2.A.2, Ha1,...,ak can be represented by a k + 1 layer DNN with
size wk; in fact, each hidden layer has exactly w nodes.

Proof of Theorem 2.3.1. Follows from Theorem 2.3.2 and Lemma 2.A.7.
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FIGURE 2.1: Top: ha1 with a1 ∈ ∆2
1 with 3 pieces in the range [0, 1]. Middle: ha2 with

a2 ∈ ∆1
1 with 2 pieces in the range [0, 1]. Bottom: Ha1,a2 = ha2 ◦ ha1 with 2 · 3 = 6 pieces

in the range [0, 1]. The dotted line in the bottom panel corresponds to the function in
the top panel. It shows that for every piece of the dotted graph, there is a full copy of

the graph in the middle panel.
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We can also get hardness of approximation versions of Theorem 2.3.1 and Corollaries 2.3.3 and 2.3.4,
with the same gaps (upto constant terms), using the following theorem.

Theorem 2.3.6. For every k ≥ 1, w ≥ 2, there exists a function fk,w that can be represented by a
(k + 1)-layer ReLU DNN with w nodes in each layer, such that for all δ > 0 and k′ ≤ k the following
holds:

inf
g∈Gk′ ,δ

∫︂ 1

x=0
| fk,w(x)− g(x)|dx > δ,

where Gk′ ,δ is the family of functions representable by ReLU DNNs with depth at most k′ + 1, and

size at most k′ wk/k′ (1−4δ)1/k′

21+1/k′ .

The depth-size trade-off results in Theorems 2.3.1, and 2.3.6 extend and improve Telgarsky’s theo-
rems from (Telgarsky, 2015; Telgarsky, 2016b) in the following three ways:

(i) If we use our Theorem 2.3.6 to the pair of neural nets considered by Telgarsky in Theorem 1.1
in Telgarsky, 2016b which are at depths k3 (of size also scaling as k3) and k then for this purpose
of approximation in the ℓ1−norm we would get a size lower bound for the shallower net which
scales as Ω(2k2

) which is exponentially (in depth) larger than the lower bound of Ω(2k) that
Telgarsky can get for this scenario.

(ii) Telgarsky’s family of hard functions is parameterized by a single natural number k. In contrast,
we show that for every pair of natural numbers w and k, and a point from the set in equation 2.2,
there exists a “hard” function which to be represented by a depth k′ network would need a size

of at least w
k
k′ k′. With the extra flexibility of choosing the parameter w, for the purpose of

showing gaps in representation ability of deep nets we can shows size lower bounds which are
super-exponential in depth as explained in Corollaries 2.3.3 and 2.3.4.

(iii) A characteristic feature of the “hard” functions in Boolean circuit complexity is that they are
usually a countable family of functions and not a “smooth” family of hard functions. In fact,
in the last section of Telgarsky, 2015, Telgarsky states this as a “weakness” of the state-of-the-
art results on “hard” functions for both Boolean circuit complexity and neural nets research.
In contrast, we provide a smoothly parameterized family of “hard” functions in Section 2.3.1
(parametrized by the set in equation 2.2). Such a continuum of hard functions wasn’t demon-
strated before this work.

We point out that Telgarsky’s results in (Telgarsky, 2016b) apply to deep neural nets with a host of
different activation functions, whereas, our results are specifically for neural nets with rectified linear
units. In this sense, Telgarsky’s results from (Telgarsky, 2016b) are more general than our results in
this paper, but with weaker gap guarantees. Eldan-Shamir (Shamir, 2016; Eldan and Shamir, 2016)
show that there exists an Rn → R function that can be represented by a 3-layer DNN, that takes
exponential in n number of nodes to be approximated to within some constant by a 2-layer DNN.
While their results are not immediately comparable with Telgarsky’s or our results, it is an interesting
open question to extend their results to a constant depth hierarchy statement analogous to the recent
result of Rossman et al (Rossman, Servedio, and Tan, 2015). We also note that in last few years,
there has been much effort in the community to show size lowerbounds on ReLU DNNs trying to
approximate various classes of functions which are themselves not necessarily exactly representable
by ReLU DNNs (Yarotsky, 2016; Liang and Srikant, 2016; Safran and Shamir, 2017).

Proof of Theorem 2.3.6. Given k ≥ 1 and w ≥ 2 define q := wk and sq := ha ◦ ha ◦ . . . ◦ ha⏞ ⏟⏟ ⏞
k times

where

a = ( 1
w , 2

w , . . . , w−1
w ) ∈ ∆q−1

1 . Thus, sq is representable by a ReLU DNN of width w + 1 and depth
k + 1 by Lemma 2.A.2. In what follows, we want to give a lower bound on the ℓ1 distance of sq from
any continuous p-piecewise linear comparator gp : R → R. The function sq contains ⌊ q

2⌋ triangles
of width 2

q and unit height. A p-piecewise linear function has p − 1 breakpoints in the interval [0, 1].

So that in at least ⌊wk

2 ⌋ − (p − 1) triangles, gp has to be affine. In the following we demonstrate that
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inside any triangle of sq, any affine function will incur an ℓ1 error of at least 1
2wk .

∫︂ 2i+2
wk

x= 2i
wk

|sq(x)− gp(x)|dx =
∫︂ 2

wk

x=0

⃓⃓⃓⃓
⃓sq(x)− (y1 + (x − 0) · y2 − y1

2
wk − 0

)

⃓⃓⃓⃓
⃓ dx

=
∫︂ 1

wk

x=0

⃓⃓⃓⃓
⃓xwk − y1 −

wkx
2

(y2 − y1)

⃓⃓⃓⃓
⃓ dx +

∫︂ 2
wk

x= 1
wk

⃓⃓⃓⃓
⃓2 − xwk − y1 −

wkx
2

(y2 − y1)

⃓⃓⃓⃓
⃓ dx

=
1

wk

∫︂ 1

z=0

⃓⃓⃓
z − y1 −

z
2
(y2 − y1)

⃓⃓⃓
dz +

1
wk

∫︂ 2

z=1

⃓⃓⃓
2 − z − y1 −

z
2
(y2 − y1)

⃓⃓⃓
dz

=
1

wk

(︄
−3 + y1 +

2y2
1

2 + y1 − y2
+ y2 +

2(−2 + y1)
2

2 − y1 + y2

)︄

The above integral attains its minimum of 1
2wk at y1 = y2 = 1

2 . Putting together,

∥swk − gp∥1 ≥
(︄
⌊wk

2
⌋ − (p − 1)

)︄
· 1

2wk ≥ wk − 1 − 2(p − 1)
4wk =

1
4
− 2p − 1

4wk

Thus, for any δ > 0,

p ≤ wk − 4wkδ + 1
2

=⇒ 2p − 1 ≤ (
1
4
− δ)4wk =⇒ 1

4
− 2p − 1

4wk ≥ δ =⇒ ∥swk − gp∥1 ≥ δ.

The result now follows from Lemma 2.A.7.

2.3.2 A continuum of hard functions for Rn → R for n ≥ 2

One measure of complexity of a family of Rn → R “hard” functions represented by ReLU DNNs is
the asymptotics of the number of pieces as a function of dimension n, depth k + 1 and size s of the
ReLU DNNs. More precisely, suppose one has a family H of functions such that for every n, k, w ∈ N

the family contains at least one Rn → R function representable by a ReLU DNN with depth at most
k + 1 and maximum width at most w. The following definition formalizes a notion of complexity for
such a H.

Definition 6 (compF(n, k, w)). The measure compF(n, k, w) is defined as the maximum number of
pieces (see Definition 3) of a Rn → R function from F that can be represented by a ReLU DNN with
depth at most k + 1 and maximum width at most w.

Similar measures have been studied in previous works (Montufar et al., 2014; Pascanu, Montu-
far, and Bengio, 2013; Raghu et al., 2016). The best known families F are the ones from Theo-
rem 4 of (Montufar et al., 2014) and a mild generalization of Theorem 1.1 of Telgarsky, 2016b to k

layers of ReLU activations with width w; these constructions achieve
(︃
⌊(w

n )⌋
)︃(k−1)n

(∑n
j=0 (

w
j ))and

compF(n, k, s) = O(wk), respectively. At the end of this section we would explain the precise sense
in which we improve on these numbers. An analysis of this complexity measure is done using integer
programming techniques in Serra, Tjandraatmadja, and Ramalingam, 2017.

Definition 7. Let b1, . . . , bm ∈ Rn. The zonotope formed by b1, . . . , bm ∈ Rn is defined as

Z(b1, . . . , bm) := {λ1b1 + . . . + λmbm : −1 ≤ λi ≤ 1, i = 1, . . . , m}.

The set of vertices of Z(b1, . . . , bm) will be denoted by vert(Z(b1, . . . , bm)). The support function
γZ(b1,...,bm) : Rn → R associated with the zonotope Z(b1, . . . , bm) is defined as

γZ(b1,...,bm)(r) = max
x∈Z(b1,...,bm)

⟨r, x⟩.
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(A) H 1
2 , 1

2
◦ Nℓ1

(B) H 1
2 , 1

2
◦ γZ(b1 ,b2 ,b3 ,b4) (C) H 1

2 , 1
2 , 1

2
◦ γZ(b1 ,b2 ,b3 ,b4)

FIGURE 2.2: We fix the a vectors for a two hidden layer R → R hard function
as a1 = a2 = ( 1

2 ) ∈ ∆1
1 Left: A specific hard function induced by ℓ1 norm:

ZONOTOPE2
2,2,2[a

1, a2, b1, b2] where b1 = (0, 1) and b2 = (1, 0). Note that in this case
the function can be seen as a composition of Ha1,a2 with ℓ1-norm Nℓ1

(x) := ∥x∥1 =

γZ((0,1),(1,0)). Middle: A typical hard function ZONOTOPE2
2,2,4[a

1, a2, c1, c2, c3, c4] with
generators c1 = ( 1

4 , 1
2 ), c2 = (− 1

2 , 0), c3 = (0,− 1
4 ) and c4 = (− 1

4 ,− 1
4 ). Note how

increasing the number of zonotope generators makes the function more complex.
Right: A harder function from ZONOTOPE2

3,2,4 family with the same set of genera-
tors c1, c2, c3, c4 but one more hidden layer (k = 3). Note how increasing the depth
make the function more complex. (For illustrative purposes we plot only the part of

the function which lies above zero.)

The following results are well-known in the theory of zonotopes (Ziegler, 1995).

Theorem 2.3.7. The following are all true.

1. | vert(Z(b1, . . . , bm))| ≤ ∑n−1
i=0 (m−1

i ). The set of (b1, . . . , bm) ∈ Rn × . . . ×Rn such that this does
not hold at equality is a 0 measure set.

2. γZ(b1,...,bm)(r) = maxx∈Z(b1,...,bm)⟨r, x⟩ = maxx∈vert(Z(b1,...,bm))⟨r, x⟩, and γZ(b1,...,bm) is therefore

a piecewise linear function with | vert(Z(b1, . . . , bm))| pieces.

3. γZ(b1,...,bm)(r) = |⟨r, b1⟩|+ . . . + |⟨r, bm⟩|.

Definition 8 (extremal zonotope set). The set S(n, m) will denote the set of (b1, . . . , bm) ∈ Rn × . . . ×
Rn such that | vert(Z(b1, . . . , bm))| = ∑n−1

i=0 (m−1
i ). S(n, m) is the so-called “extremal zonotope set”,

which is a subset of Rnm, whose complement has zero Lebesgue measure in Rnm.

Lemma 2.3.8. Given any b1, . . . , bm ∈ Rn, there exists a 2-layer ReLU DNN with size 2m which
represents the function γZ(b1,...,bm)(r).

Proof of Lemma 2.3.8. By Theorem 2.3.7(part 3.), γZ(b1,...,bm)(r) = |⟨r, b1⟩|+ . . . + |⟨r, bm⟩|. It suffices
to observe

|⟨r, b1⟩|+ . . . + |⟨r, bm⟩| = max{⟨r, b1⟩,−⟨r, b1⟩}+ . . . + max{⟨r, bm⟩,−⟨r, bm⟩}.

Proposition 2.3.9. Given any tuple (b1, . . . , bm) ∈ S(n, m) and any point

(a1, . . . , ak) ∈
⋃︂

M>0
(∆w−1

M × ∆w−1
M × . . . × ∆w−1

M )⏞ ⏟⏟ ⏞
k times

,

the function ZONOTOPEn
k,w,m[a

1, . . . , ak, b1, . . . , bm] := Ha1,...,ak ◦ γZ(b1,...,bm) has (m− 1)n−1wk pieces
and it can be represented by a k + 2 layer ReLU DNN with size 2m + wk.
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Proof of Proposition 2.3.9. The fact that ZONOTOPEn
k,w,m[a

1, . . . , ak, b1, . . . , bm] can be represented by
a k + 2 layer ReLU DNN with size 2m + wk follows from Lemmas 2.3.8 and 2.A.2. The number of
pieces follows from the fact that γZ(b1,...,bm) has ∑n−1

i=0 (m−1
i ) distinct linear pieces by parts 1. and 2. of

Theorem 2.3.7, and Ha1,...,ak has wk pieces by Lemma 2.3.5.

Finally, we are ready to state the main result of this section.

Theorem 2.3.10. For every tuple of natural numbers n, k, m ≥ 1 and w ≥ 2, there exists a family of
Rn → R functions, which we call ZONOTOPEn

k,w,m with the following properties:

(i) Every f ∈ ZONOTOPEn
k,w,m is representable by a ReLU DNN of depth k + 2 and size 2m + wk,

and has
(︂

∑n−1
i=0 (m−1

i )
)︂

wk pieces.

(ii) Consider any f ∈ ZONOTOPEn
k,w,m. If f is represented by a (k′ + 1)-layer DNN for any k′ ≤ k,

then this (k′ + 1)-layer DNN has size at least max
{︃

1
2 (k

′w
k

k′n ) · (m − 1)(1−
1
n )

1
k′ − 1 , w

k
k′

n1/k′ k′
}︃

.

(iii) The family ZONOTOPEn
k,w,m is in one-to-one correspondence with

S(n, m)×
⋃︂

M>0
(∆w−1

M × ∆w−1
M × . . . × ∆w−1

M )⏞ ⏟⏟ ⏞
k times

.

Proof of Theorem 2.3.10. Follows from Proposition 2.3.9 (and invoking Lemma 2.A.7 to get the size
lowerbounds).

Comparison to the results in (Montufar et al., 2014)

Firstly we note that the construction in Montufar et al., 2014 requires all the hidden layers to have
width at least as big as the input dimensionality n. In contrast, we do not impose such restrictions
and the network size in our construction is independent of the input dimensionality. Thus our result
probes networks with bottleneck architectures whose complexity cant be seen from their result.

Secondly, in terms of our complexity measure, there seem to be regimes where our bound does better.
One such regime, for example, is when n ≤ w < 2n and k ∈ Ω( n

log(n) ), by setting in our construction
m < n.

Thirdly, it is not clear to us whether the construction in Montufar et al., 2014 gives a smoothly param-
eterized family of functions other than by introducing small perturbations of the construction in their
paper. In contrast, we have a smoothly parameterized family which is in one-to-one correspondence
with a well-understood manifold like the higher-dimensional torus.

2.4 Training 2-layer Rn → R ReLU DNNs to global optimality

In this section we consider the following empirical risk minimization problem. Given D data points
(xi, yi) ∈ Rn × R, i = 1, . . . , D, find the function f represented by 2-layer Rn → R ReLU DNNs of
width w, that minimizes the following optimization problem,

min
f∈F{n,w,1}

1
D

D

∑
i=1

ℓ( f (xi), yi) ≡ min
T1∈Aw

n , T2∈L1
w

1
D

D

∑
i=1

ℓ
(︁

T2(σ(T1(xi))), yi
)︁

(2.3)

where ℓ : R×R → R is a convex loss function (common loss functions are the squared loss, ℓ(y, y′) =
(y − y′)2, and the hinge loss function given by ℓ(y, y′) = max{0, 1 − yy′}). Our main result of this
section gives an algorithm to solve the above empirical risk minimization problem to global optimal-
ity.

Theorem 2.4.1. There exists an algorithm to find a global optimum of Problem 2.3 in time
O(2w(D)nwpoly(D, n, w)). Note that the running time O(2w(D)nwpoly(D, n, w)) is polynomial in the
data size D for fixed n, w.
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2.4. Training 2-layer Rn → R ReLU DNNs to global optimality

Proof Sketch: Before giving the full proof of Theorem 2.4.1 below here we first provide a sketch
of it. When the empirical risk minimization problem is viewed as an optimization problem in the
space of weights of the ReLU DNN, it is a nonconvex, quadratic problem. However, one can instead
search over the space of functions representable by 2-layer DNNs by writing them in the form similar
to (2.1). This breaks the problem into two parts: a combinatorial search and then a convex problem
that is essentially linear regression with linear inequality constraints. This enables us to guarantee
global optimality.

Algorithm 1 Empirical Risk Minimization

1: function ERM(D) ▷ Where D = {(xi, yi)}D
i=1 ⊂ Rn × R

2: S = {+1,−1}w ▷ All possible instantiations of top layer weights
3: Pi = {(Pi

+, Pi
−)}, i = 1, . . . , w ▷ All possible partitions of data into two parts

4: P = P1 ×P2 × · · · ×Pw

5: count = 1 ▷ Counter
6: for s ∈ S do

7: for {(Pi
+, Pi

−)}w
i=1 ∈ P do

8: loss(count) =

{︄
minã,b̃ ∑D

j=1 ∑i:j∈Pi
+
ℓ(yj, si(ãi · xj + b̃i))

ãi · xj + b̃i ≤ 0 ∀j ∈ Pi
−

ãi · xj + b̃i ≥ 0 ∀j ∈ Pi
+

9: count++
10: end for

11: OPT = argmin loss(count)

12: end for

13: return {ã}, {b̃}, s corresponding to OPT’s iterate

14: end function

Let T1(x) = Ax + b and T2(y) = a′ · y for A ∈ Rw×n and b, a′ ∈ Rw. If we denote the i-th row of the
matrix A by ai, and write bi, a′i to denote the i-th coordinates of the vectors b, a′ respectively, due to
homogeneity of ReLU gates, the network output can be represented as

f (x) =
w

∑
i=1

a′i max{0, ai · x + bi} =
w

∑
i=1

si max{0, ãi · x + b̃i}.

where ãi ∈ Rn, b̃i ∈ R and si ∈ {−1,+1} for all i = 1, . . . , w.

For any hidden node i ∈ {1 . . . , w}, the pair (ãi, b̃i) induces a partition Pi := (Pi
+, Pi

−) on the dataset,
given by Pi

− = {j : ãi · xj + bĩ ≤ 0} and Pi
+ = {1, . . . , D}\Pi

−. Algorithm 1 proceeds by generating
all combinations of the partitions Pi as well as the top layer weights s ∈ {+1,−1}w, and minimizing
the loss ∑D

j=1 ∑i:j∈Pi
+
ℓ(si(ãi · xj + b̃i), yj) subject to the constraints ãi · xj + b̃i ≤ 0 ∀j ∈ Pi

− and

ãi · xj + b̃i ≥ 0 ∀j ∈ Pi
+ which are imposed for all i = 1, . . . , w,which is a convex program.

Proof of Theorem 2.4.1. Let ℓ : R → R be any convex loss function, and let (x1, y1), . . . , (xD, yD) ∈
Rn × R be the given D data points. As stated in (2.3), the problem requires us to find an affine
transformation T1 : Rn → Rw and a linear transformation T2 : Rw → R, so as to minimize the
empirical loss as stated in (2.3). Note that T1 is given by a matrix A ∈ Rw×n and a vector b ∈ Rw

so that T(x) = Ax + b for all x ∈ Rn. Similarly, T2 can be represented by a vector a′ ∈ Rw such
that T2(y) = a′ · y for all y ∈ Rw. If we denote the i-th row of the matrix A by ai, and write bi, a′i to
denote the i-th coordinates of the vectors b, a′ respectively, we can write the function represented by
this network as

f (x) =
w

∑
i=1

a′i max{0, ai · x + bi} =
w

∑
i=1

sgn(a′i)max{0, (|a′i|ai) · x + |a′i|bi}.

In other words, the family of functions over which we are searching is of the form

f (x) =
w

∑
i=1

si max{0, ãi · x + b̃i} (2.4)

where ãi ∈ Rn, bi ∈ R and si ∈ {−1,+1} for all i = 1, . . . , w.
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We now make the following observation. For a given data point (xj, yj) if ãi · xj + b̃i ≤ 0, then the i-th
term of (2.4) does not contribute to the loss function for this data point (xj, yj). Thus, for every data
point (xj, yj), there exists a set Sj ⊆ {1, . . . , w} such that f (xj) = ∑i∈Sj

si(ãi · xj + b̃i). In particular,
if we are given the set Sj for (xj, yj), then the expression on the right hand side of (2.4) reduces to a
linear function of ãi, b̃i. For any fixed i ∈ {1, . . . , w}, these sets Sj induce a partition of the data set
into two parts. In particular, we define Pi

+ := {j : i ∈ Sj} and Pi
− := {1, . . . , D} \ Pi

+. Observe now
that this partition is also induced by the hyperplane given by ãi, b̃i: Pi

+ = {j : ãi · xj + b̃i > 0} and
Pi
+ = {j : ãi · xj + b̃i ≤ 0}. Our strategy will be to guess the partitions Pi

+, Pi
− for each i = 1, . . . , w,

and then do linear regression with the constraint that regression’s decision variables ãi, b̃i induce the
guessed partition.

More formally, the algorithm does the following. For each i = 1, . . . , w, the algorithm guesses a
partition of the data set (xj, yj), j = 1, . . . , D by a hyperplane. Let us label the partitions as follows
(Pi

+, Pi
−), i = 1, . . . , w. So, for each i = 1, . . . , w, Pi

+ ∪ Pi
− = {1, . . . , D}, Pi

+ and Pi
− are disjoint,

and there exists a vector c ∈ Rn and a real number δ such that Pi
− = {j : c · xj + δ ≤ 0} and

Pi
+ = {j : c · xj + δ > 0}. Further, for each i = 1, . . . , w the algorithm selects a vector s in {+1,−1}w.

For a fixed selection of partitions (Pi
+, Pi

−), i = 1, . . . , w and a vector s in {+1,−1}w, the algorithm
solves the following convex optimization problem with decision variables ãi ∈ Rn, b̃i ∈ R for i =
1, . . . , w (thus, we have a total of (n+ 1) ·w decision variables). The feasible region of the optimization
is given by the constraints

ãi · xj + b̃i ≤ 0 ∀j ∈ Pi
−

ãi · xj + b̃i ≥ 0 ∀j ∈ Pi
+

(2.5)

which are imposed for all i = 1, . . . , w. Thus, we have a total of D · w constraints. Subject to these
constraints we minimize the objective ∑D

j=1 ∑i:j∈Pi
+
ℓ(si(ãi · xj + b̃i), yj). Assuming the loss function ℓ

is a convex function in the first argument, the above objective is a convex function. Thus, we have to
minize a convex objective subject to the linear inequality constraints from (2.5).

We finally have to count how many possible partitions (Pi
+, Pi

−) and vectors s the algorithm has
to search through. It is well-known (Matousek, 2002) that the total number of possible hyperplane
partitions of a set of size D in Rn is at most 2(D

n) ≤ Dn whenever n ≥ 2. Thus with a guess for each
i = 1, . . . , w, we have a total of at most Dnw partitions. There are 2w vectors s in {−1,+1}w. This
gives us a total of 2wDnw guesses for the partitions (Pi

+, Pi
−) and vectors s. For each such guess, we

have a convex optimization problem with (n + 1) · w decision variables and D · w constraints, which
can be solved in time poly(D, n, w). Putting everything together, we have the running time claimed
in the statement.

The above argument holds only for n ≥ 2, since we used the inequality 2(D
n) ≤ Dn which only holds

for n ≥ 2. For n = 1, a similar algorithm can be designed, but one which uses the characterization
achieved in Theorem 2.2.2.

Let ℓ : R → R be any convex loss function, and let (x1, y1), . . . , (xD, yD) ∈ R2 be the given D data
points. Using Theorem 2.2.2, to solve problem (2.3) it suffices to find a R → R piecewise linear
function f with w pieces that minimizes the total loss. In other words, the optimization problem (2.3)
is equivalent to the problem

min

{︄
D

∑
i=1

ℓ( f (xi), yi) : f is piecewise linear with w pieces

}︄
. (2.6)

We now use the observation that fitting piecewise linear functions to minimize loss is just a step away
from linear regression, which is a special case where the function is contrained to have exactly one
affine linear piece. Our algorithm will first guess the optimal partition of the data points such that all
points in the same class of the partition correspond to the same affine piece of f , and then do linear
regression in each class of the partition. Alternatively, one can think of this as guessing the interval
(xi, xi+1) of data points where the w− 1 breakpoints of the piecewise linear function will lie, and then
doing linear regression between the breakpoints.
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More formally, we parametrize piecewise linear functions with w pieces by the w slope-intercept val-
ues (a1, b1), . . . , (a2, b2), . . . , (aw, bw) of the w different pieces. This means that between breakpoints j
and j + 1, 1 ≤ j ≤ w − 2, the function is given by f (x) = aj+1x + bj+1, and the first and last pieces are
a1x + b1 and awx + bw, respectively.

Define I to be the set of all (w − 1)-tuples (i1, . . . , iw−1) of natural numbers such that 1 ≤ i1 ≤
. . . ≤ iw−1 ≤ D. Given a fixed tuple I = (i1, . . . , iw−1) ∈ I, we wish to search through all piece-
wise linear functions whose breakpoints, in order, appear in the intervals (xi1 , xi1+1), (xi2 , xi2+1),
. . . , (xiw−1 , xiw−1+1). Define also S = {−1, 1}w−1. Any S ∈ S will have the following interpretation:
if Sj = 1 then aj ≤ aj+1, and if Sj = −1 then aj ≥ aj+1. Now for every I ∈ I and S ∈ S, requiring a
piecewise linear function that respects the conditions imposed by I and S is easily seen to be equiva-
lent to imposing the following linear inequalities on the parameters (a1, b1), . . . , (a2, b2), . . . , (aw, bw):

Sj(bj+1 − bj − (aj − aj+1)xij) ≥ 0
Sj(bj+1 − bj − (aj − aj+1)xij+1) ≤ 0

Sj(aj+1 − aj) ≥ 0
(2.7)

Let the set of piecewise linear functions whose breakpoints satisfy the above be denoted by PWL1
I,S

for I ∈ I, S ∈ S.

Given a particular I ∈ I, we define

D1 := {xi : i ≤ i1},
Dj := {xi : ij−1 < i ≤ i1} j = 2, . . . , w − 1,
Dw := {xi : i > iw−1}

.

Observe that

min{
D

∑
i=1

ℓ( f (xi)− yi) : f ∈ PWL1
I,S} = min{

w

∑
j=1

(︃
∑

i∈Dj

ℓ(aj · xi + bj − yi)

)︃
: (aj, bj) satisfy (2.7)} (2.8)

The right hand side of the above equation is the problem of minimizing a convex objective subject to
linear constraints. Now, to solve (2.6), we need to simply solve the problem (2.8) for all I ∈ I, S ∈ S

and pick the minimum. Since |I| = (D
w) = O(Dw) and |S| = 2w−1 we need to solve O(2w · Dw)

convex optimization problems, each taking time O(poly(D)). Therefore, the total running time is
O((2D)wpoly(D)).

2.4.1 Discussion on the complexity of solving ERM on deep-nets

The running time of the algorithm (Algorithm 1) that we gave above to find the exact global minima
of a two layer ReLU-DNN is exponential in the input dimension n and the number of hidden nodes
w. The exponential dependence on n can not be removed unless P = NP; see Shalev-Shwartz and
Ben-David, 2014; Blum and Rivest, 1992; DasGupta, Siegelmann, and Sontag, 1995; Dey, Wang, and
Xie, 2018. However, we are not aware of any complexity results which would rule out the possibility
of an algorithm which trains to global optimality in time that is polynomial in the data size and/or
the number of hidden nodes, assuming that the input dimension is a fixed constant. Resolving this
dependence on network size would be another step towards clarifying the theoretical complexity
of training ReLU DNNs and is a good open question for future research, in our opinion. Thus our
training result of solving the ERM on depth 2 nets in time polynomial in the number of data points
is a step towards resolving this gap in the complexity literature.

A related result for improperly learning ReLUs has been recently obtained in Goel et al., 2016. In
contrast, our algorithm returns a ReLU DNN from the class being learned. Another difference is
that their result considers the notion of reliable learning as opposed to the empirical risk minimization
objective considered in (2.3) for which we give a quick definition below,

Definition 9. Suppose distribution D is supported on X × [0, 1]. For [0, 1] ⊆ Y′ let h : X → Y′ be some
function and let ℓ : Y′ × [0, 1] → R+ be a loss function. The we define two notions of expected loss,
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L=0(h, D) = P(x,y)∼D[h(x) ̸= 0 and y = 0]

L>0(h, D) = E(x,y)∼D[ℓ(h(x), y).1y>0]

We say that a concept class C ⊆ [0, 1]X is “reliably agnostically learnable with respect to a loss func-
tion, ℓ : Y′ × [0, 1] → R+” (where [0, 1] ⊆ Y′) if for every ϵ, δ > 0 there exists a learning algorithm
which satisfies the following :

That ∀ distributions D over X × [0, 1] given access to examples drawn from D, the algorithm out-
puts a hypothesis h : X → Y such that,

L=0(h, D) ≤ ϵ and L>0(h, D) ≤ ϵ + min
c∈C′(D)

L>0(c)

where,
C′(D) = {c ∈ C|L=0(c, D) = 0}

Further if if X ⊆ Rn and s is a parameter that captures the representation complexity (i.e description
length) of concepts in c ∈ C then we say that C is “efficiently reliably agnostically learnable to error
ϵ” if the running time of the above algorithm that is supposed to exist is poly(n, s, 1

δ ).

Asking or L=0(h, D) to be low captures mathematically the idea of trying to minimize the rate of
“false positives”.

Perhaps a big breakthrough would be to get optimal training algorithms for DNNs with two or more
hidden layers and this seems like a substantially harder nut to crack. We end this discussion by
pointing out some recent progress towards that which has been made in Boob, Dey, and Lan, 2018.

2.5 Understanding neural functions over Boolean inputs

The classic paper Maass, 1997, established complexity results for the entire class of functions repre-
sented by circuits where the gates can come from a very general family while the inputs are restricted
to discrete domains. This is complemented by papers that study a very specific family of gates such
as the sigmoid gate or the LTF gate (R ∋ y ↦→ 1y≥0) (Impagliazzo, Paturi, and Saks, 1997), (Siu, Roy-
chowdhury, and Kailath, 1994; Sherstov, 2007; Krause and Pudlák, 1994), (Buhrman, Vereshchagin,
and Wolf, 2007; Sherstov, 2009; Razborov and Sherstov, 2010; Bun and Thaler, 2016). Many associ-
ated results can also be found in these reviews like Lee, Shraibman, et al., 2009 and Razborov, 1992.
Recent circuit complexity results in Kane and Williams, 2016, Tamaki, 2016, Chen, Santhanam, and
Srinivasan, 2016, Kabanets, Kane, and Lu, 2017 stand out as significant improvements over known
lower (and upper) bounds on circuit complexity with threshold gates. The results of Maass, 1997
also show that very general families of neural networks can be converted into circuits with only LTF
gates with at most a constant factor blow up in depth and polynomial blow up in size of the circuits.

Some of the prior results which apply to general gates, such as the ones in Maass, 1997, also apply
to ReLU gates, because those results apply to gates that compute a piecewise polynomial function
(ReLU is a piecewise linear function with only two pieces). However, as witnessed by results on LTF
gates, one can usually make much stronger claims about specific classes of gates. The main focus
of this work is to study circuits computing Boolean functions mapping {−1, 1}m → {−1, 1} which
use ReLU gates in their intermediate layers, and have an LTF gate at the output node (to ensure that
the output is in {−1, 1}). We remark that using an LTF gate at the output node while allowing more
general analog gates in the intermediate nodes is a standard practice when studying the Boolean
complexity of analog gates (see, for example, Maass, 1997).

Other than Williams, 2018, we are not aware of an analysis of lower bounds for ReLU circuits when
applied to only Boolean inputs. In contrast, there has been recent work on the analysis of such cir-
cuits when viewed as a function from Rn to R (i.e., allowing real inputs and output). From Eldan
and Shamir, 2016 and Daniely, 2017 (with restrictions on the domain and the weights) we know of
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(super-)exponential lowerbounds on the size of Sum-of-ReLU circuits for certain easy Sum-of-ReLU-
of-ReLU functions . Depth v/s size tradeoffs for such circuits have recently also been studied in
Telgarsky, 2016a; Hanin, 2017; Liang and Srikant, 2016; Yarotsky, 2016; Safran and Shamir, 2016 and
in this chapter so far. But to the best of our knowledge no lowerbounds scaling exponentially with
the dimension are known for analog deep neural networks of depths more than 2.

In what follows, the depth of a circuit will be the length of the longest path from the output node
to an input variable, and the size of a circuit will be the total number of gates in the circuit. We will
also use the notation Sum-of-ReLU to refer to circuits whose inputs feed into a single layer of ReLU
gates, whose outputs are combined into a weighted sum to give the final output. Similarly, Sum-of-
ReLU-of-ReLU denotes the circuit with depth 3, where the output node is a simple weighted sum,
and the intermediate gates are all ReLU gates in the two “hidden” layers. We analogously define
Sum-of-LTF, LTF-of-LTF, LTF-of-ReLU, LTF-of-LTF-of-LTF, LTF-of-ReLU-of-ReLU and so on. We will
also use the notation LTF-of-(ReLU)k for a circuit of the form LTF-of-ReLU-of-RELU-. . .-ReLU with
k ≥ 1 levels of ReLU gates.

2.5.1 Statement and discussion of our results over Boolean inputs

Boolean v/s real inputs. We begin our study with the following observation which shows that ReLU
circuits have markedly different behaviour when the inputs are restricted to be Boolean, as opposed
to arbitrary real inputs. Since AND and OR gates can both be implemented by ReLU gates, it follows
that any Boolean function can be implemented by a ReLU-of-ReLU circuit. In fact, it is not hard to
show something slightly stronger:

Lemma 2.5.1. Any function f : {−1, 1}n → R can be implemented by a Sum-of-ReLU circuit using at
most min{2n, ∑ f̂ (S) ̸=0 |S|} number of ReLU gates, where f̂ (S) denotes the Fourier coefficient of f for
the set S ⊆ {1, . . . , n}.

The Lemma follows by observing that the indicator functions of each vertex of the Boolean hypercube
{−1, 1}n can be implemented by a single ReLU gate, and the parity function on k variables can be
implemented by k ReLU gates (see Appendix 2.D). Thus, if one does not restrict the size of the circuit,
then Sum-of-ReLU circuits can represent any pseudo-Boolean function. In contrast, we will now
show that if one allows real inputs, then there exist functions with just 2 inputs (i.e., n = 2) which
cannot be represented by any Sum-of-ReLU circuit, no matter how large.

Proposition 2.5.2. The function max{0, x1, x2} cannot be computed by any Sum-of-ReLU circuit, no
matter how many ReLU gates are used. It can be computed by a Sum-of-ReLU-of-ReLU circuit.

The first part of the above proposition (the impossibility result) is proved in Appendix 2.B. The second
part follows from Lemma 2.2.1, which stated that any Rn → R function that can be implemented by
a circuit of ReLU gates, can always be implemented with at most ⌈log(n + 1)⌉ layers of ReLU gates
(with a weighted Sum to give the final output).

Restricting to Boolean inputs. From this point on, we will focus entirely on the situation where
the inputs to the circuits are restricted to {−1, 1}. One motivation behind our results is the desire to
understand the strength of the ReLU gates vis-a-vis LTF gates. It is not hard to see that any circuit
with LTF gates can be simulated by a circuit with ReLU gates with at most a constant blow-up in
size (because a single LTF gate can be simulated by 2 ReLU gates when the inputs are a discrete set –
see Appendix 2.C). The question is whether ReLU gates can do significantly better than LTF gates in
terms of depth and/or size.

A quick observation is that Sum-of-ReLU circuits can be linearly (in the dimension n) smaller than
Sum-of-LTF circuits. More precisely,
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Proposition 2.5.3. The function f : {−1, 1}n → R given by f (x) = ∑n
i=1 2i(︁ 1+xi

2
)︁

can be implemented
by a Sum-of-ReLU circuit with 2 ReLU gates, and any Sum-of-LTF that implements f needs Ω(n)
gates.

The above result follows from the following two facts: 1) any linear function is implementable by 2
ReLU gates, and 2) any Sum-of-LTF circuit with w LTF gates gives a piecewise constant function that
takes at most 2w different values. Since f takes 2n different values (it evaluates every vertex of the
Boolean hypercube to the corresponding natural number expressed in binary), we need w ≥ n gates.

In the context of these preliminary results, we now state our main contributions. For the next result
we recall the definition of the Andreev function (Andreev, 1987) which has previously many times
been used to prove computational lower bounds (Paterson and Zwick, 1993; Impagliazzo and Naor,
1988; Impagliazzo, Meka, and Zuckerman, 2012).

Definition 10 (Andreev’s function). The Andreev’s function is the following mapping,

An : {0, 1}⌊ n
2 ⌋ × {0, 1}⌊log( n

2 )⌋×⌊ n
2⌊log( n

2 )⌋ ⌋ −→ {0, 1}
(x, [aij]) ↦−→ xbin(z([aij ]))

where z([aij]) = {(∑
⌊ n

2⌊log( n
2 )⌋ ⌋

j=1 aij) mod 2}i=1,2,..,⌊log( n
2 )⌋ is the binary string constructed by noting

down the odd/even parity of each of the row sums in the matrix [aij] and “bin” is the function that
gives the decimal number that can be represented by its input bit string.

Kane and Williams, 2016 have recently established the first super linear lower bounds for approxi-
mating the Andreev function using LTF-of-LTF circuits. In the following theorem we show that their
techniques can be adapted to also establish an almost linear lower bound on the size of LTF-of-ReLU
circuits approximating this Andreev function with no restriction on the weights w, b for each gate.

Theorem 2.5.4. For any δ ∈ (0, 1
2 ), there exists N(δ) ∈ N such that for all n ≥ N(δ) and ϵ >√︃

2 log
2

2−δ (n)
n , any LFT-of-ReLU circuit on n bits that matches the Andreev function on n−bits for

at least 1/2 + ϵ fraction of the inputs, has size Ω(ϵ2(1−δ)n1−δ).

It is well known that proving lower bounds without restrictions on the weights is much more chal-
lenging even in the context of LTF circuits. In fact, the recent results in Kane and Williams, 2016 are
the first superlinear lower bounds for LTF circuits with no restrictions on the weights. With restric-
tions on some or all the weights, e.g., assuming poly(n) bounds on the weights (typically termed the
“small weight asssumption”) in certain layers, exponential lower bounds have been established for
LTF circuits (Hajnal et al., 1987; Impagliazzo, Paturi, and Saks, 1997; Sherstov, 2009; Sherstov, 2011).
Our next results are of this flavor: under certain kinds of weight restrictions, we prove exponential
size lower bounds on the size of LTF-of-(ReLU)d−1 circuits. We emphasize that our weight restrictions
are assumed only on the bottom layer (closest to the input). The other layers can have gates with unbounded
weights. Nevertheless, our weight restrictions are somewhat unconventional.

Definition 11. (The polyhedral cones Pm,σ) Let m ∈ N and σ be any permutation of {1, . . . , 2m}.
Let us also consider an arbitrary sequencing {x1, . . . , x2m} of the vertices of the hypercube {−1, 1}m.
Define the following polyhedral cone,

Pm,σ := {a ∈ Rm : ⟨a, xσ(1)⟩ ≤ ⟨a, xσ(2)⟩ ≤ . . . ⟨a, xσ(2m)⟩}.

In words, Pm,σ is the set of all linear objectives that order the vertices of the m-dimensional hypercube
in the order specified by σ.
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Definition 12. (Our weight restriction condition) Below, we shall be considering circuits on 2m in-
puts which come partitioned into two blocks (x, y) so that x, y ∈ {−1, 1}m. The weight restriction
we impose is that there exist permutations σ1 and σ2 of {1, . . . , 2m} such that for each ReLU gate in
the bottom layer mapping as, (x, y) ↦→ max{0, b + ⟨w1, x⟩ + ⟨w2, y⟩}, for some bias value of b and
weight vectors w1 and w2, satisfy the following two conditions, (1) wi ∈ Pm,σi for i = 1, 2 (see Defini-
tion 11)and (2) all weights are integers with magnitude bounded by some W > 0.

We emphasize the existence of a single σ defining a single polyhedral cone Pm,σ which contains all the
weight vectors corresponding to x in the bottom most layer of the net (similarly for all the weights
corresponding to y). But the two cones, one for x and one for y, are allowed to be different.

Remark. One can see that Rm is a disjoint union of the different face-sharing polyhedral cones Pm,σ
obtained for different σ ∈ S2m. Thus part (1) of the above weight restriction is equivalent to asking
all the weight vectors in the bottom layer of the net corresponding to x part of the input to lie in any
one of these special cones (and similarly for the y part of the input).

Let OMB is the ODD-MAX-BIT function which is a ±1 threshold gate which evaluates to −1 on say
a n−bit input x if ∑n

i=1(−1)i+12i(1 + xi) ≥ 1
2 . We will prove our lower bounds against the function

proposed by Arkadev Chattopadhyay and Nikhil Mande in Chattopadhyay and Mande, 2017,

g : OMB0
n ◦ OR

n
1
3 +log n

◦ XOR2 : {−1, 1}2(n
4
3 +n log n) → {−1, 1} (2.9)

which we will refer to as the Chattopadhyay-Mande function in the remainder of the paper. Here
we use the notation from Chattopadhyay and Mande, 2017 whereby if pm and qn are two Boolean
functions taking m and n bits respectively for input, we denote a composition of them as, pm ◦ qn :
{−1, 1}mn → {−1, 1}. Here its understood that the input implicitly comes grouped into m blocks of
size n on each of which q acts and pm acts on the m−tuple of outputs of these qn functions.

We show the following exponential lowerbound against this Chattopadhyay-Mande function.

Theorem 2.5.5. Let m, d, W ∈ N. Any depth d LTF-of-(ReLU)d−1 circuits on 2m bits such that the
weights in the bottom layer are restricted as per Definition 12 that implements the Chattopadhyay-
Mande function on 2m bits will require a circuit size of,

Ω

⎛⎜⎝(d − 1)

⎡⎣ 2m
1
8

mW

⎤⎦
1

(d−1)
⎞⎟⎠ .

Consequently, one obtains the same size lower bounds for circuits with only LTF gates of depth d.

Remark. Note that this is an exponential in dimension size lowerbound for even super-polynomially
growing bottom layer weights (and additional constraints as per Definition 12) and upto depths
scaling as d = O(mξ) for any ξ < 1

8 .

We note that the Chattopadhyay-Mande function can be represented by an O(m) size LTF-of-LTF
circuit with no restrictions on weights (see Theorem 2.5.6 below). In light of this fact, Theorem 2.5.5 is
somewhat surprising as it shows that for the purpose of representing Boolean functions a deep ReLU
circuit (ending in a LTF) gate can get exponentially weakened when just its bottom layer weights
are restricted as per Definition 12, even if the integers are allowed to be super-polynomially large.
Moreover, the lower bounds also hold of LTF circuits of arbitrary depth d, under the same weight
restrictions on the bottom layer. We are unaware of any exponential lower bounds on LTF circuits of
arbitrary depth under any kind of weight restrictions.

We will use the method of sign-rank to obtain the exponential lowerbounds in Theorems 2.5.5. The
sign-rank of a real matrix A with all non-zero entries is the least rank of a matrix B of the same
dimension with all non-zero entries such that for each entry (i, j), sign(Bij) = sign(Aij). For a Boolean
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function f mapping, f : {−1, 1}m × {−1, 1}m → {−1, 1} one defines the “sign-rank of f” as the
sign-rank of the 2m × 2m dimensional matrix [ f (x, y)]x,y∈{−1,1}m . This notion of a sign-rank has been
used to great effect in diverse fields from communication complexity to circuit complexity to learning
theory. Explicit matrices with a high sign-rank were not known till the breakthrough work by Forster,
Forster, 2002. Forster et. al. showed elegant use of this complexity measure to show exponential
lowerbounds against LTF-of-MAJ circuits in Forster et al., 2001. Lot of the previous literature about
sign-rank has been reviewed in the book Lokam et al., 2009. Most recently Chattopadhyay and
Mande, 2017 have proven a strict containment of LTF-of-MAJ in LTF-of-LTF. The following theorem
statement is a combination of their Theorem 5.2 and intermediate steps in their Corollary 1.2,

Theorem 2.5.6 (Chattopadhyay-Mande (2017)).
The Chattopadhyay-Mande function g in equation 2.9 can be represented by a linear sized LTF-of-LTF

circuit and sign-rank(g) ≥ 2
n

1
3

81 −3

In Appendix 2.E we will prove our Theorem 2.5.5 by showing a small upper bound on the sign-
rank of LTF-of-(ReLU)d−1 circuits which have their bottom most layer’s weight restricted as given in
Definition 12.

2.6 Lower bounds for LTF-of-ReLU against the Andreev function
(Proof of Theorem 2.5.4)

We will use the classic “method of random restrictions” (Subbotovskaya, 1961; stad, 1998; Hastad,
1986; Yao, 1985; Rossman, 2008) to show a lowerbound for weight unrestricted LTF-of-ReLU circuits
for representing the Andreev function. The basic philosophy of this method is to take any arbitrary
LTF-of-ReLU circuit which supposedly matches the Andreev function on a large fraction of the inputs
and to randomly fix the values on some of its input coordinates and also do the same fixing on
the same coordinates of the input to the Andreev function. Then we show that upon doing this
restriction the Andreev function collapses to an arbitrary Boolean function on the remaining inputs
(what it collapses to depends on what values were fixed on its inputs that got restricted). But on the
other hand we show that the LTF-of-ReLU collapses to a circuit which is of such a small size that
with high-probability it cannot possibly approximate a randomly chosen Boolean function on the
remaining inputs. This contradiction leads to a lowerbound.

There are two important concepts towards implementing the above idea. First one is about being able
to precisely define as to when can a ReLU gate upon a partial restriction of its inputs be considered
to be removable from the circuit. Once this notion is clarified it will automatically turn out that doing
random restrictions on ReLU is the same as doing random restriction on a LTF gate as was recently
done in Kane and Williams, 2016. And secondly it needs to be true that at any fixed size, LTF-
of-ReLU circuits cannot represent too many of all the Boolean functions possible at the same input
dimension. For this very specific case of LTF-of-ReLU circuits where ReLU gates necessarily have a
fan-out of 1, Theorem 2.1 in Maass, 1997 applies and we have from there that LTF-of-ReLU circuits
over n−bits with w ReLU gates can represent at most N = 2O((wn+w+w+1+1)2 log(wn+w+w+1+1)) =

2O((wn+2w+2)2 log(wn+2w+2)) number of Boolean functions. We note that slightly departing from the
usual convention with neural networks here in this work by Wolfgaang Mass he allows for direct
wires from the input nodes to the output LTF gate. This flexibility ties in nicely with how we want to
define a ReLU gate to be becoming removable under the random restrictions that we use.

Random Boolean functions vs any circuit class In everything that follows all samplings being
done (denoted as ∼) are to be understood as sampling from an uniform distribution unless otherwise
specified. Firstly we note this well-known lemma,

Claim 1. Let f : {−1, 1}n → {−1, 1} be any given Boolean function. Then the following is true,

Pg∼{{−1,1}n→{−1,1}}

[︃
Px∼{−1,1}n [ f (x) = g(x)] ≥ 1

2
+ ϵ

]︃
≤ e−2n+1ϵ2
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From the above it follows that if N is the total number of functions in any circuit class (whose mem-
bers be called C) then we have by union bound,

Pg∼{{−1,1}n→{−1,1}}

[︃
∃C s.t Px∼{−1,1}n [C(x) = g(x)] ≥ 1

2
+ ϵ

]︃
≤ Ne−2n+1ϵ2

(2.10)

Equipped with these basics we are now ready to begin the proof of the lowerbound against weight
unrestricted LTF-of-ReLU circuits,

Proof of Theorem 2.5.4.

Definition 13. Let D denote arbitrary LTF-of-ReLU circuits over ⌊log( n
2 )⌋ bits.

For some ϵ
3 ≤ 1

2 and a size function denoted as s(n, ϵ) we use equation 2.10 , the definition of D
above and the upperbound given earlier for the number of LTF-of-ReLU functions at a fixed circuit
size (now used for circuits on ⌊log( n

2 )⌋ bits) to get,

P
f∼{0,1}⌊log( n

2 )⌋→{0,1}

[︄
∀D s.t |D| ≤ s(n, ϵ) |P

y∼{0,1}⌊log( n
2 )⌋ [ f (y) = D(y)] ≤

(︂1
2
+

ϵ

3

)︂]︄

≥ 1 − 2O(s2 log2( n
2 ) log(log( n

2 )s))e−
(︂

ϵ2
9

)︂
21+⌊log( n

2 )⌋

≥ 1 − 2O(s2k2 log(ks))e−
(︂

2ϵ2
9

)︂
2k

≥ 1 − eO(s2k2 log(ks))−
(︂

2ϵ2
9

)︂
2k

whereby in the last inequality above we have assumed that n = 2k+1. This assumption is legitimate
because we want to estimate certain large n asymptotics. Now for some θ > 0 if for large n we choose,

ϵ >

√︂
2 log2+θ( n

2 )
n and s = s(n, ϵ) ≤ O( ϵ

2
2+θ n

1
2+θ

2
1

2+θ log( n
2 )
) then we have,

P
f∼{0,1}⌊log( n

2 )⌋→{0,1}

[︄
∀D s.t |D| ≤ s(n, ϵ) |P

y∼{0,1}⌊log( n
2 )⌋ [ f (y) = D(y)] ≤

(︂1
2
+

ϵ

3

)︂]︄
≥ 1 − ϵ

3
(2.11)

Definition 14 (F∗). Let F∗ be the subset of all these f above for which the above event is true i.e

F∗ :=
{︃

f : {0, 1}⌊log( n
2 )⌋ → {0, 1} | ∀D s.t |D| ≤ s(n, ϵ) |P

y∼{0,1}⌊log( n
2 )⌋ [ f (y) = D(y)]

}︃

Now we recall the definition of the Andreev function in equation 10 for the following definition and
the claim,

Definition 15. Let ρ be a choice of a “restriction” whereby one is fixing all the input bits of An except
1 bit in each row of the matrix a. So the restricted function (call it An|ρ) computes a function of the
form,

An|ρ : {0, 1}⌊log( n
2 )⌋ → {0, 1}

Note that we shall henceforth be implicitly fixing a bijection mapping,

{0, 1}n → {0, 1}⌊ n
2 ⌋ × {0, 1}⌊log( n

2 )⌋×⌊ n
2⌊log( n

2 )⌋ ⌋ and hence for any function C : {0, 1}n → {0, 1}, it
would be meaningful to talk of C|ρ. From the definitions of An and ρ above, the following is imme-
diate,
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Claim 2. The truth table of An|ρ is the x string in the input to An that gets fixed by ρ. Thus we observe
that if ρ is chosen uniformly at random then An|ρ is a ⌊log( n

2 )⌋ bit Boolean function chosen uniformly
at random.

Let f ∗ be any arbitrary member of F∗. Let x∗ ∈ {0, 1}⌊ n
2 ⌋ be the truth-table of f ∗. Let ρ(x∗) be

restrictions on the input of An which fix the x part of its input to x∗. So when we are sampling
restrictions uniformly at random from the restrictions of the type ρ(x∗) these different instances differ
in which bit of each row of the matrix a (of the input to An) they left unfixed and to what values did
they fix the other entries of a. Let C be a n bit LTF-of-ReLU Boolean circuit of size say w(n, ϵ). Thus
under a restriction of the type ρ(x∗) both C and An are ⌊log( n

2 )⌋ bit Boolean functions.

Now we note that a ReLU gate over n bits upon a random restriction becomes redundant (and hence
removable) iff its linear argument either reduces to a non-positive definite function or a positive
definite function. In the former case the gate is computing the constant function zero and in the
later case it is computing a linear function which can be simply implemented by introducing wires
connecting the inputs directly to the output LTF gate. Thus in both the cases the resultant function
no more needs the ReLU gate for it to be computed. (We note that such direct wires from the input
to the output gate were allowed in how the counting was done of the total number of LTF-of-ReLU
Boolean functions at a fixed circuit size.) Combining both the cases we note that the conditions for
collapse (in this sense) of a ReLU gate is identical to that of the conditions of collapse for a LTF gate
for which Kane and Williams, 2016 in their Lemma 1.1 had proven the following,

Lemma 2.6.1 (Lemma 1.1 of Kane and Williams, 2016). Let f : {0, 1}n → {0, 1} be a linear thresh-
old function. Let P be a partition of [n] into parts of equal size, and let RP be the distribution on
restrictions ρ : [n] → {0, 1, ∗} that randomly fixes all but one element of each part of P. Then we
have,

Pρ∼RP
[ f is not forced to a constant by ρ] = O

(︃ |P|√
n

)︃

In our context the above implies,

Pρ(x∗)[ReLU|ρ(x∗)is removable ] ≥ η

where η = 1 − O(
log n√

n )

The above definition of η implies,

Pρ(x∗)[ A n−bit ReLU is not forced to a constant ] ≤ 1 − η

=⇒ Eρ(x∗)[ Number of ReLUs of C not forced to a constant ] ≤ w(n, ϵ)(1 − η)

=⇒ Pρ(x∗)[ Number of ReLUs of C not forced to a constant > s(n, ϵ)]

≤
Eρ(x∗)[ Number of ReLUs of C not forced to a constant ]

s(n, ϵ)

=⇒ Pρ(x∗)[ Number of ReLUs of C not forced to a constant ≥ s(n, ϵ)] ≤ w(n, ϵ)(1 − η)

s(n, ϵ)

=⇒ Pρ(x∗)[ Size of C|ρ(x∗) ≤ s(n, ϵ)] ≥ 1 − w(n, ϵ)(1 − η)

s(n, ϵ)

(2.12)

Now we compare with the definitions of ϵ and f ∗ to observe that (a) with probability at least 1 −
w(n,ϵ)(1−η)

s(n,ϵ) , C|ρ(x∗) is a circuit of the type called “D” in the event in equation 2.11 and (b) by definition
of the Andreev function it follows that An|ρ(x∗) has its truth table given by x∗ and hence it specifies
the same function as f ∗ ∈ F∗. Hence ∀x∗ and ρ(x∗) we can read off from equation 2.11,
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P
y∼{0,1}⌊log( n

2 )⌋ [C|ρ(x∗)(y) = An|ρ(x∗)(y)| Size of C|ρ(x∗) ≤ s(n, ϵ)] ≤ 1
2
+

ϵ

3
(2.13)

Recalling Definition 14, the equation 2.11 can be written as,

P
f∼{0,1}⌊log( n

2 )⌋→{0,1}[ f ∈ F∗] ≥ 1 − ϵ

3
(2.14)

Claim 3. Circuits C have low correlation with the Andreev function

Pz∼{0,1}n [C(z) = An(z)] ≤
ϵ

3
+

w(n, ϵ)(1 − η)

s(n, ϵ)
+

1
2
+

ϵ

3

Proof. We think of sampling a z ∼ {0, 1}n as a two step process of first sampling a f̃ , a ⌊log( n
2 )⌋ bit

Boolean function and fixing the first ⌊ n
2 ⌋ bits of z to be the truth-table of f̃ and then we randomly

assign values to the remaining ⌊ n
2 ⌋ bits of z. Call these later ⌊ n

2 ⌋ bit string to be xother.

Pz∼{0,1}n [C(z) = An(z)] = Pz∼{0,1}n [(C(z) = An(z)) ∩ ( f̃ ∈ F∗)] + Pz∼{0,1}n [(C(z) = An(z)) ∩ ( f̃ /∈ F∗)]

= Pz∼{0,1}n [(C(z) = An(z)) | ( f̃ ∈ F∗)]Pz∼{0,1}n [ f̃ ∈ F∗]

+ Pz∼{0,1}n [(C(z) = An(z)) ∩ ( f̃ /∈ F∗)]

≤ Pz∼{0,1}n [(C(z) = An(z)) | ( f̃ ∈ F∗)] + Pz∼{0,1}n [ f̃ /∈ F∗]

≤ Pz∼{0,1}n [(C(z) = An(z)) | ( f̃ ∈ F∗)] +
ϵ

3

In the last line above we have invoked equation 2.14. Now we note that sampling the n bit string
z such that f̃ ∈ F∗ is the same as doing a random restriction of the type ρ( f̃ ) and then randomly
picking a ⌊log( n

2 )⌋ bit string say y. So we can rewrite the last inequality as,

Pz∼{0,1}n [C(z) = An(z)] ≤ P(ρ( f̃ ),y)[C(ρ( f̃ ), y) = An(ρ( f̃ ), y)] +
ϵ

3

≤ E(ρ( f̃ ),y)[1C(ρ( f̃ ),y)=An(ρ( f̃ ),y) | ( f̃ ∈ F∗)] +
ϵ

3
≤ E(ρ( f̃ ),y)[1C(ρ( f̃ ),y)=An(ρ( f̃ ),y)1Size of C|ρ( f̃ )<s(n,ϵ) | ( f̃ ∈ F∗)]

+ E(ρ( f̃ ),y)[1C(ρ( f̃ ),y)=An(ρ( f̃ ),y)1Size of C|ρ( f̃ )≥s(n,ϵ) | ( f̃ ∈ F∗)] +
ϵ

3

≤ P(ρ( f̃ ),y)[C(ρ( f̃ ), y) = An(ρ( f̃ ), y) |
(︂
(Size of C|ρ( f̃ ) < s(n, ϵ)) ∩ ( f̃ ∈ F∗)

)︂
]

+ P(ρ( f̃ ),y)[Size of C|ρ( f̃ ) ≥ s(n, ϵ) | ( f̃ ∈ F∗)] +
ϵ

3

≤
(︃

1
2
+

ϵ

3

)︃
+

w(n, ϵ)(1 − η)

s(n, ϵ)
+

ϵ

3

In the last step above we have used equations 2.13 and 2.12.

So after putting back the values of η and the largest scaling of s(n, ϵ) that we can have (from equation
2.11), the upperbound on the above probability becomes,

1
2
+

2ϵ

3
+ O

(︄
w(n, ϵ) log(n)
√

n( ϵ
2

2+θ n
1

2+θ

2
1

2+θ log( n
2 )
)

)︄
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Thus the probability is upperbounded by 1
2 + ϵ as long as w(n, ϵ) = O

(︄
ϵ

1+ 2
2+θ n

1
2 +

1
2+θ log

(︂
n
2

)︂
log(n)

)︄
Stated as a lowerbound we have that if a LTF-of-ReLU has to match the n−bit Andreev function on

more than 1
2 + ϵ fraction of the inputs for ϵ >

√︂
2 log2+θ( n

2 )
n for some θ > 0 (asymptotically this is

like having a constant ϵ) then the LTF-of-ReLU needs to be of size Ω(ϵ
4+θ
2+θ n

1
2+

1
2+θ ). Now we define

δ ∈ (0, 1
2 ) such that δ = θ

2(2+θ)
and that gives the form of the almost linear lowerbound as stated in

the theorem.
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Appendix To Chapter 2

2.A Expressing piecewise linear functions using ReLU DNNs

Proof of Theorem 2.2.2. Any continuous piecewise linear function R → R which has m pieces can be
specified by three pieces of information, (1) sL the slope of the left most piece, (2) the coordinates of
the non-differentiable points specified by a (m − 1)−tuple {(ai, bi)}m−1

i=1 (indexed from left to right)
and (3) sR the slope of the rightmost piece. A tuple (sL, sR, (a1, b1), . . . , (am−1, bm−1) uniquely spec-
ifies a m piecewise linear function from R → R and vice versa. Given such a tuple, we construct a
2-layer DNN which computes the same piecewise linear function.

One notes that for any a, r ∈ R, the function

f (x) =

{︄
0 x ≤ a
r(x − a) x > a

(2.15)

is equal to sgn(r)max{|r|(x − a), 0}, which can be implemented by a 2-layer ReLU DNN with size 1.
Similarly, any function of the form,

g(x) =

{︄
t(x − a) x ≤ a
0 x > a

(2.16)

is equal to − sgn(t)max{−|t|(x − a), 0}, which can be implemented by a 2-layer ReLU DNN with
size 1. The parameters r, t will be called the slopes of the function, and a will be called the breakpoint
of the function.

If we can write the given piecewise linear function as a sum of m functions of the form (2.15) and (2.16),
then by Lemma 2.A.3 we would be done. It turns out that such a decomposition of any p piece PWL
function h : R → R as a sum of p flaps can always be arranged where the breakpoints of the p flaps
all are all contained in the p − 1 breakpoints of h. First, observe that adding a constant to a function
does not change the complexity of the ReLU DNN expressing it, since this corresponds to a bias on
the output node. Thus, we will assume that the value of h at the last break point am−1 is bm−1 = 0.

We now use a single function f of the form (2.15) with slope r and breakpoint a = am−1, and m − 1
functions g1, . . . , gm−1 of the form (2.16) with slopes t1, . . . , tm−1 and breakpoints a1, . . . , am−1, respec-
tively.

Thus, we wish to express h = f + g1 + . . . + gm−1. Such a decomposition of h would be valid if we
can find values for r, t1, . . . , tm−1 such that (1) the slope of the above sum is = sL for x < a1, (2)
the slope of the above sum is = sR for x > am−1, and (3) for each i ∈ {1, 2, 3, .., m − 1} we have
bi = f (ai) + g1(ai) + . . . + gm−1(ai).

The above corresponds to asking for the existence of a solution to the following set of simultaneous
linear equations in r, t1, . . . , tm−1:

sR = r, sL = t1 + t2 + . . . + tm−1, bi =
m−1

∑
j=i+1

tj(aj−1 − aj) for all i = 1, . . . , m − 2

It is easy to verify that the above set of simultaneous linear equations has a unique solution. In-
deed, r must equal sR, and then one can solve for t1, . . . , tm−1 starting from the last equation bm−2 =
tm−1(am−2 − am−1) and then back substitute to compute tm−2, tm−3, . . . , t1.
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The lower bound of p − 1 on the size for any 2-layer ReLU DNN that expresses a p piece function
follows from Lemma 2.A.7.

One can do better in terms of size when the rightmost piece of the given function is flat, i.e., sR = 0. In
this case r = 0, which means that f = 0; thus, the decomposition of h above is of size p − 1. A similar
construction can be done when sL = 0. This gives the following statement which will be useful for
constructing our forthcoming hard functions.

Corollary 2.A.1. If the rightmost or leftmost piece of a R → R piecewise linear function has 0 slope,
then we can compute such a p piece function using a 2-layer DNN with size p − 1.

Proof of theorem 2.2.3. Since any piecewise linear function Rn → R is representable by a ReLU DNN
by Corollary 2.2.1, the proof simply follows from the fact that the family of continuous piecewise
linear functions is dense in any Lp(Rn) space, for 1 ≤ p ≤ ∞.

Now we will collect some straightforward observations that will be used often in constructing com-
plex neural functions starting from simple ones. The following operations preserve the property of
being representable by a ReLU DNN.

Lemma 2.A.2. [Function Composition] If f1 : Rd → Rm is represented by a d, m ReLU DNN with
depth k1 + 1 and size s1, and f2 : Rm → Rn is represented by an m, n ReLU DNN with depth k2 + 1
and size s2, then f2 ◦ f1 can be represented by a d, n ReLU DNN with depth k1 + k2 + 1 and size
s1 + s2.

Proof. Follows from (1.1) and the fact that a composition of affine transformations is another affine
transformation.

Lemma 2.A.3. [Function Addition] If f1 : Rn → Rm is represented by a n, m ReLU DNN with depth
k + 1 and size s1, and f2 : Rn → Rm is represented by a n, m ReLU DNN with depth k + 1 and size s2,
then f1 + f2 can be represented by a n, m ReLU DNN with depth k + 1 and size s1 + s2.

Proof. We simply put the two ReLU DNNs in parallel and combine the appropriate coordinates of
the outputs.

Lemma 2.A.4. [Taking maximums/minimums] Let f1, . . . , fm : Rn → R be functions that can each
be represented by Rn → R ReLU DNNs with depths ki + 1 and size si, i = 1, . . . , m. Then the
function f : Rn → R defined as f (x) := max{ f1(x), . . . , fm(x)} can be represented by a ReLU DNN
of depth at most max{k1, . . . , km} + log(m) + 1 and size at most s1 + . . . sm + 4(2m − 1). Similarly,
the function g(x) := min{ f1(x), . . . , fm(x)} can be represented by a ReLU DNN of depth at most
max{k1, . . . , km}+ ⌈log(m)⌉+ 1 and size at most s1 + . . . sm + 4(2m − 1).

Proof. We prove this by induction on m. The base case m = 1 is trivial. For m ≥ 2, consider g1 :=
max{ f1, . . . , f⌊ m

2 ⌋} and g2 := max{ f⌊ m
2 ⌋+1, . . . , fm}. By the induction hypothesis (since ⌊m

2 ⌋, ⌈m
2 ⌉ < m

when m ≥ 2), g1 and g2 can be represented by ReLU DNNs of depths at most max{k1, . . . , k⌊ m
2 ⌋}+

⌈log(⌊m
2 ⌋)⌉+ 1 and max{k⌊ m

2 ⌋+1, . . . , km}+ ⌈log(⌈m
2 ⌉)⌉+ 1 respectively, and sizes at most s1 + . . . s⌊ m

2 ⌋+
4(2⌊m

2 ⌋ − 1) and s⌊ m
2 ⌋+1 + . . . + sm + 4(2⌊m

2 ⌋ − 1), respectively. Therefore, the function G : Rn → R2

given by G(x) = (g1(x), g2(x)) can be implemented by a ReLU DNN with depth at most max{k1, . . . , km}+
⌈log(⌈m

2 ⌉)⌉+ 1 and size at most s1 + . . . + sm + 4(2m − 2).

We now show how to represent the function T : R2 → R defined as T(x, y) = max{x, y} = x+y
2 +

|x−y|
2 by a 2-layer ReLU DNN with size 4 – see Figure 2.A.1. The result now follows from the fact that

f = T ◦ G and Lemma 2.A.2.

Lemma 2.A.5. Any affine transformation T : Rn → Rm is representable by a 2-layer ReLU DNN of
size 2m.
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FIGURE 2.A.1: A 2-layer ReLU DNN computing max{x1, x2} = x1+x2
2 + |x1−x2|

2

Proof. Simply use the fact that T = (I ◦ σ ◦ T) + (−I ◦ σ ◦ (−T)), and the right hand side can be
represented by a 2-layer ReLU DNN of size 2m using Lemma 2.A.3.

Lemma 2.A.6. Let f : R → R be a function represented by a R → R ReLU DNN with depth k + 1
and widths w1, . . . , wk of the k hidden layers. Then f is a PWL function with at most 2k−1 · (w1 + 1) ·
w2 · . . . · wk pieces.
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FIGURE 2.A.2: The number of pieces increasing after activation. If the blue function is
f , then the red function g = max{0, f + b} has at most twice the number of pieces as f

for any bias b ∈ R.

Proof. We prove this by induction on k. The base case is k = 1, i.e, we have a 2-layer ReLU DNN.
Since every activation node can produce at most one breakpoint in the piecewise linear function, we
can get at most w1 breakpoints, i.e., w1 + 1 pieces.

Now for the induction step, assume that for some k ≥ 1, any R → R ReLU DNN with depth k + 1
and widths w1, . . . , wk of the k hidden layers produces at most 2k−1 · (w1 + 1) · w2 · . . . · wk pieces.

Consider any R → R ReLU DNN with depth k + 2 and widths w1, . . . , wk+1 of the k + 1 hidden
layers. Observe that the input to any node in the last layer is the output of a R → R ReLU DNN
with depth k + 1 and widths w1, . . . , wk. By the induction hypothesis, the input to this node in the
last layer is a piecewise linear function f with at most 2k−1 · (w1 + 1) · w2 · . . . · wk pieces. When we
apply the activation, the new function g(x) = max{0, f (x)}, which is the output of this node, may
have at most twice the number of pieces as f , because each original piece may be intersected by the
x-axis; see Figure 2.A.2. Thus, after going through the layer, we take an affine combination of wk+1
functions, each with at most 2 · (2k−1 · (w1 + 1) · w2 · . . . · wk) pieces. In all, we can therefore get at
most 2 · (2k−1 · (w1 + 1) · w2 · . . . · wk) · wk+1 pieces, which is equal to 2k · (w1 + 1) · w2 · . . . · wk · wk+1,
and the induction step is completed.

Lemma 2.A.6 has the following consequence about the depth and size tradeoffs for expressing func-
tions with agiven number of pieces.
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Lemma 2.A.7. Let f : R → R be a piecewise linear function with p pieces. If f is represented by a
ReLU DNN with depth k + 1, then it must have size at least 1

2 kp1/k − 1. Conversely, any piecewise
linear function f that is represented by a ReLU DNN of depth k + 1 and size at most s, can have at
most ( 2s

k )
k pieces.

Proof. Let widths of the k hidden layers be w1, . . . , wk. By Lemma 2.A.6, we must have

2k−1 · (w1 + 1) · w2 · . . . · wk ≥ p. (2.17)

By the AM-GM inequality, minimizing the size w1 + w2 + . . . + wk subject to (2.17), means setting
w1 + 1 = w2 = . . . = wk. This implies that w1 + 1 = w2 = . . . = wk ≥ 1

2 p1/k. The first statement
follows. The second statement follows using the AM-GM inequality again, this time with a restriction
on w1 + w2 + . . . + wk.

2.B Proof of Proposition 2.5.2

We first observe that the set of points where max{0, x1, x2} is not differentiable is precisely the union
of the three half-lines (or rays) {(x1, x2) : x1 = x2, x1 ≥ 0} ∪ {(0, x2) : x2 ≤ 0} ∪ {(x1, 0) : x1 ≤ 0}.
On the other hand, consider any Sum-of-ReLU circuit, which can be expressed as a function of the
form

f (x) =
w

∑
i=1

ci max{0, ⟨ai, x⟩+ bi},

where w ∈ N is the number of ReLU gates in the ciruit, and ai ∈ R2, bi, ci ∈ R for all i = 1, . . . , w. This
implies that f (x) is piecewise linear and the set of points where f (x) is not differentiable is precisely
the union of the w lines ⟨ai, x⟩+ bi = 0, i = 1, . . . , w. Since a union of lines cannot equal the union
of the three half-lines {(x1, x2) : x1 = x2, x1 ≥ 0} ∪ {(0, x2) : x2 ≤ 0} ∪ {(x1, 0) : x1 ≤ 0}, we obtain
the consequence that max{0, x1, x2} cannot be represented by a Sum-of-ReLU circuit, no matter how
many ReLU gates are used.

2.C Simulating an LTF gate by a ReLU gate

Claim 4. Any LTF gate {−1, 1}n → {−1, 1} can be simulated by a Sum-of-ReLU circuit with at most
2 ReLU gates.

Proof. Given a LTF gate (21⟨a,x⟩+b≥0 − 1) it separates the points in {−1, 1}n into two subsets such
that the plane ⟨a, x⟩ + b = 0 is a separating hyperplane between the two sets. Let −p < 0 be the
value of the function ⟨a, x⟩ + b at that hypercube vertex on the “-1” side which is closest to this
separating plane. Now imagine a continuous piecewise linear function f : R → R such that f (x) =
−1 for x ≤ −p, f (x) = 1 for x ≥ 0 and for x ∈ (−p, 0) f is the straight line function connecting
(−p,−1) to (0, 1). It follows from Theorem 2.2.2 that this f can be implemented by a R → R Sum-
of-ReLU with at most 2 ReLU gates hinged at the points −p and 0 on the domain. Because the affine
transformation ⟨a, x⟩+ b can be implemented by the wires connecting the n input nodes to the layer
of ReLUs it follows that there exists a Rn → R Sum-of-ReLU with at most 2 ReLU gates implementing
the function g(x) = f (⟨a, x⟩+ b) : Rn → R. Its clear that g(x) = LTF(x) for all x ∈ {−1, 1}n.

2.D PARITY on k−bits can be implemented by a O(k) Sum-of-
ReLU circuit

For this proof its convenient to think of the PARITY function as the following map,

PARITY : {0, 1}k → {0, 1} (2.18)

x ↦→
(︄

k

∑
i=1

xi

)︄
mod 2 (2.19)
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2.E. Proof of Theorem 2.5.5 (Proving smallness of the sign-rank of LTF-of-(ReLU)d−1 with weight
restrictions only on the bottom most layer)

Its clear that that in the evaluation of the PARITY function as stated above the required sum over
the coordinates of the input Boolean vector will take as value every integer in the set, {0, 1, 2, .., k}.
The PARITY function can then be lifted to a f : R → R function such that, f (y) = 0 for all y ≤ 0,
f (y) = y mod 2 for all y ∈ 1, 2, .., k, f (y) = k mod 2 for all y > k and for any y ∈ (p, p + 1) for p ∈
{0, 1, .., k − 1} f is the straight line function connecting the points, (p, p mod 2) and (p + 1, (p + 1)
mod 2). Thus f is a continuous piecewise linear function on R with k + 2 linear pieces. Then it
follows from Theorem 2.2.3 that this f can be implemented by a R → R Sum-of-ReLU circuit with at
most k+ 1 ReLU gates hinged at the points {0, 1, 2, .., k} on the domain. The wires from the k inputs of
the ReLU gates can implement the linear function ∑k

i=1 xi. Thus it follows that there exists a Rk → R

Sum-of-ReLU circuit (say C) such that, C(x) = PARITY(x) for all x ∈ {0, 1}k.

2.E Proof of Theorem 2.5.5 (Proving smallness of the sign-rank of
LTF-of-(ReLU)d−1 with weight restrictions only on the bottom
most layer)

For a {−1, 1}M → {−1, 1} LTF-of-ReLU circuit with any given weights on the network the inputs to
the threshold function of the top LTF gate are some set of 2M real numbers (one for each input). Over
all these inputs let p > 0 be the distance from 0 of the largest negative number on which the LTF gate
ever gets evaluated. Then by increasing the bias at this last LTF gate by a quantity less then p we
can ensure that no input to this LTF gate is 0 while the entire circuit still computes the same Boolean
function as originally. So we can assume without loss of generality that the input to the threshold
function at the top LTF gate is never 0. We also recall that the weights at the bottom most layer are
constrained to be integers of magnitude at most W > 0.

Let this depth d LTF-of-(ReLU)d−1 circuit map {−1, 1}m × {−1, 1}m → {−1, 1}. Let {wk}d−1
k=1 be the

widths of the ReLU layers at depths indexed by increasing k with increasing distance from the input.
Thus, the output LTF gate gets wd−1 inputs; the j-th input, for j = 1, 2, .., wd−1, is the output of a
circuit Cj of depth d − 1 composed of only ReLU gates. Let f j(x, y) : {−1, 1}m × {−1, 1}m → R be
the pseudo-Boolean function implemented by Cj.

Thus the output of the overall LTF-of-(ReLU)d−1 circuit is,

f (x, y) := LTF

[︄
β +

wd−1

∑
j=1

αj f j(x, y)

]︄
(2.20)

Lemma 2.E.1. Let k ≥ 1 and w1, . . . , wk ≥ 1 be natural numbers. Consider a family of depth k + 1
circuits (say indexed by i ∈ I for some index set I) with 2m inputs and a single output and consisting
of only ReLU gates. Let all of them have wj ReLU gates at depth j, with j = 1 corresponding to the
layer closest to the input (note that single output ReLU gate is not counted here). Moreover, let all
of the circuits in the family have the same weights in all their layers except for the layer closest to
the output. We restrict the inputs to {−1, 1}m × {−1, 1}m and let the ith circuit (i ∈ I) implement a
pseudo-Boolean function gi : {−1, 1}m × {−1, 1}m → R. Assume that the weights of the w1 ReLU
gates in the layer closest to the input are restricted as per Definition 12. For every i ∈ I, define
the 2m × 2m matrix Gi(x, y) whose rows are indexed by x ∈ {−1, 1}m and columns are indexed by
y ∈ {−1, 1}m as follows:

Gi(x, y) = gi(x, y).

Then there exists a fixed way to order the rows and columns such that for each Gi there exists a
contiguous partitioning (which can depend on i) of its rows and columns into O

(︁
(∏k

i=1 wi)(mW)
)︁

blocks (thus, Gi has O
(︁
(∏k

i=1 wi)
2(mW)2)︁ blocks), and within each block Gi is constant valued.

Before we prove the above lemma, let us see why it implies Theorem 2.5.5.
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Proof. (of Theorem 2.5.5) Let Fj(x, y) be the matrix obtained from the ReLU circuit outputs f j(x, y)
from (2.20), and let F(x, y) be the matrix obtained from f (x, y). Let J2m×2m be the matrix of all ones.
Then

sign-rank(F(x, y)) = sign-rank

(︄
sign

[︄
βJ2m×2m +

wd−1

∑
j=1

αjFj(x, y)

]︄)︄

≤ rank

(︄
βJ2m×2m +

wd−1

∑
j=1

αjFj(x, y)

)︄

≤ 1 +
wd−1

∑
j=1

rank(Fj(x, y))

=O

⎛⎝(︄d−1

∏
k=1

wk

)︄2

(mW)2

⎞⎠
where the first inequality follows from the definition of sign-rank, the second inequality follows
from the subadditivty of rank and the last inequality is a consequence of using Lemma 2.E.1 at depth
k + 1 = d − 1. Indeed, a matrix with block structure as in the conclusion of Lemma 2.E.1 has rank at
most O

(︁
(∏k

i=1 wi)
2(mW)2)︁ by expressing it as a sum of these many matrices of rank one and using

subaddivity of rank.
Now we recall that the Chattopadhyay-Mande function g (which is linear sized depth 2 LTF) on

2m = 2(n
4
3 + n log n) bits has sign-rank Ω(2

n
1
3

81 ). It follows that we can find a constant C > 1 s.t for

all large enough n we have, C4n
4
3 ≥ m. Then we would have, sign-rank(g) = Ω(2

m
1
4

81C ). From the
above upper bound on the sign-rank of our bottom layer weight restricted LTF-of-(ReLU)d−1 with
widths {wk}d−1

k=1 it follows that for this to represent this Chattopadhyay-Mande function it would

need,
(︃(︂

∏d−1
k=1 wk

)︂2
(mW)2

)︃
= Ω(2

m
1
4

81C ). Hence it follows by the “AM≥GM” inequality that the size

(1 + ∑d−1
k=1 wi) required for such LTF-of-(ReLU)d−1 circuits to represent the Chattopadhyay-Mande

function is Ω

⎛⎝(d − 1)

[︄
2m

1
8

mW

]︄ 1
(d−1)

⎞⎠.

The statement about LTF circuits is a straightforward consequence of the above result and Claim 4 in
Appendix 2.C which says that any LTF gate can be simulated by 2 ReLU gates.

Towards proving Lemma 2.E.1 we first make the following observation,

Claim 5. Let w, M, D be fixed natural numbers. Let A1, . . . , Aw be any M× M matrices such that there
exists a fixed way to order the rows and columns for each of the Ai such that they get partitioned
contiguously into D blocks (not necessarily equal in size) and this partitioning is such that Ai is
constant valued within each of the D2 blocks. Then A := A1 + . . . + Aw is an M × M matrix whose
rows and columns can be partitioned contiguously into w(D − 1) + 1 groups such that A is constant
valued within each block defined by this partition of the rows and columns.

Proof. The partition of the rows of Ai into D contiguous blocks is equivalent to a choice of D − 1 lines
out of M − 1 lines. (Potentially a different set of D − 1 lines for each Ai) But the guarantee that this
partitioning is induced in each of the Ai by the same ordering of the rows means that When we sum
the matrices, the refined partition in the sum corresponds to some selection of w(D − 1) lines out of
the M − 1 lines. This gives us at most w(D − 1) + 1 contiguous blocks among the rows of the sum
matrix. The same argument holds for the columns.

Proof of Lemma 2.E.1. We will prove this Lemma by induction on k.
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2.E. Proof of Theorem 2.5.5 (Proving smallness of the sign-rank of LTF-of-(ReLU)d−1 with weight
restrictions only on the bottom most layer)

The base case of the induction k = 1 (i.e depth 2) A single ReLU gate in the bottom most layer of
the net which receives a tuple of vectors (x, y) as input gives as output the number, max{0, ⟨a1, x⟩+
⟨a2, y⟩ + b}, for some a1, a2 ∈ Rm and b ∈ R. Since the entries of a1, a2 and b are assumed to be
integers bounded by W > 0 and x, y ∈ {−1, 1}m, the terms ⟨a1, x⟩ and ⟨a2, y⟩ can each take at most
O(mW) different values. So we can arrange the rows and columns of the 2m × 2m dimensional output
matrix of this gate in increasing order of ⟨a1, x⟩ and ⟨a2, y⟩ and then partition the rows and columns
contiguously according to these values. And we note that because of the weight restriction as in Defi-
nition 12 that applies to each of ReLU gates in the bottom most layer, the ordering in increasing value
of the inner-products as said above induces the same ordering of the rows for each of these output
matrices at the different ReLU gates. Similarly, the same ordering is induced on the columns (note
that the orderings for the rows may be different from the ordering for the columns; what is important
is that the rows have the same ordering across the family and similarly for the columns.)

Now we notice that the structure of the output matrices of the ReLU gates of the bottom most layer
as described above is what is assumed in Claim 5.

Thus if {Gp(x, y)}p=1,..,w1 are the output matrices at each of the ReLU gates in the bottom most
layer, then for some a ∈ Rw1 and b ∈ R at depth 2 the output matrix of any of the ReLU gates is
given by, max{0, bJ2m×2m + ∑w1

i=1 aiGi(x, y)} where J2m×2m is the matrix of all ones and the “max” is
taken entrywise. Then the base case of the induction is settled by applying Claim 5 on this matrix,
bJ2m×2m + ∑w1

i=1 aiGi(x, y) with D = O(mW) and w = w1.

We further note that the computations happening at the depth 2 ReLU gates obviously do not change
the ordering of the rows and columns frozen in at depth 1, i.e., in the Gi matrices. But with differ-
ent depth 2 gates, i.e., different choices of the vectors a and the number b, because of the linearity
(in a and b) of the operation of forming, bJ2m×2m + ∑w1

i=1 aiGi(x, y) they all have the same contiguous
pattern of constant valued submatrices. Thus the depth 2 output matrices continue to satisfy the
hypothesis of Claim 5.

To complete the induction step, we consider a family of ReLU circuits with depth k+ 1 corresponding
to different choices of, b ∈ R and a ∈ Rwk which can be seen as computing g(x, y) = max{0, b +
∑wk

p=1 apgp(x, y)} where {gp(x, y)}p=1,..,wk is a family of ReLU circuits of depth k who by induction
satisfy the lemma. Thus the corresponding output matrices of these depth k + 1 circuits satisfy,

G(x, y) = max{0, bJ2m×2m +
wk

∑
p=1

apGp(x, y)}

where Gp is the matrix form of gp. Thus, the induction hypothesis applied to depth k would then tell
us that the rows and columns of each matrix Gp can be partitioned contiguously into O

(︁
(∏k−1

i=1 wi)(mW)
)︁

such that Gp is constant valued within each block. Then, by Claim 5, the rows and columns of the ma-
trix bJ2m×2m + ∑wk

p=1 apGp(x, y) can be partitioned into O
(︁
(∏k

i=1 wi)(mW)
)︁

contiguous blocks. More-
over, this ordering of the rows and colums does not vary across the different circuits in the family,
because they all have the same weights in the bottom most layer. Hence, the same ordering works
for all the circuits in the family.
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Chapter 3
Provable Training of a ReLU gate

3.1 A review of provable neural training

In this chapter we will prove results about trainability of a ReLU gate under more general settings
than hitherto known till date. To the best of our knowledge about the state-of-the-art in deep-learning
both empirical and population risk minimization questions are typically solvable in either of the
following two mutually exclusive scenarios : Scenario 1 : Semi-Realizable Data i.e the data comes as
tuples z = (x, y) with y being the noise corrupted output of a net (of known architecture) when given
x as an input. And Scenario 2 : Semi-Agnostic Data i.e data comes as tuples z = (x, y) with no obvious
functional relationship between x and y but there could be geometrical or statistical assumptions
about the x and y.

We note that its not very interesting to work in the fully agnostic setting as in that case training even a
single ReLU gate can be SPN-hard as shown in Goel et al., 2016 On the other hand the simplifications
that happen for infinitely large networks have been discussed since Neal, 1996 and this theme has had
a recent resurgence in works like Chizat and Bach, 2018; Jacot, Gabriel, and Hongler, 2018. Eventually
this lead to an explosion of literature getting linear time training of various kinds of neural nets when
their width is a high degree polynomial in training set size, inverse accuracy and inverse confidence
parameters (a very unrealistic regime), (Lee et al., 2018; Wu, Du, and Ward, 2019; Du et al., 2018; Su
and Yang, 2019; Kawaguchi and Huang, 2019; Huang and Yau, 2019; Allen-Zhu, Li, and Song, 2019a;
Allen-Zhu, Li, and Liang, 2019; Allen-Zhu, Li, and Song, 2019b; Du and Lee, 2018; Zou et al., 2018a;
Zou and Gu, 2019; Arora et al., 2019c; Arora et al., 2019b; Li et al., 2019; Arora et al., 2019a; Lee et al.,
2018). The essential proximity of this regime to kernel methods have been thought of separately in
works like Allen-Zhu and Li, 2019; Wei et al., 2019

Even in the wake of this progress, it remains unclear as to how any of this can help establish rigorous
guarantees about “smaller” neural networks or more pertinently for constant size neural nets which
is a regime closer to what is implemented in the real world. Thus motivated we can summarize what
is open about training depth 2 nets into the following two questions,

1. Question 1 Can any algorithm train a ReLU gate to ϵ−accuracy in poly(input−dimension, 1
ϵ )

time using neither symmetry nor compact support assumptions on the distribution?

• Question 1.5 Can a single ReLU gate be trained using (Stochastic) Gradient Descent with
(a) random/arbitrary initialization and (b) weakly constrained data distribution - at least
allowing it to be non-Gaussian and preferably non-compactly supported?

2. Question 2 Can a neural training algorithm work with the following naturally wanted proper-
ties being simultaneously true?

(a) Nets of depth 2 with a constant/small number of gates.

(b) The training data instances (and maybe also the noise) would have non-Gaussian non-compactly
supported distributions.

(c) Less structural assumptions on the weight matrices than being of the single filter convolutional type.

(d) ϵ−approximate answers be obtainable in at most poly(input−dimension, 1
ϵ ) time.
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3.2 A summary of our results

We make progress on some of the above fronts by drawing inspiration from two distinct streams of
literature and often generalizing and blending techniques from them. First of them are the different
avatars of the iterative stochastic non-gradient “Tron” algorithms analyzed in the past like, Rosen-
blatt, 1958; Pal and Mitra, 1992; Freund and Schapire, 1999; Kakade et al., 2011; Klivans and Meka,
2017; Goel and Klivans, 2017; Goel, Klivans, and Meka, 2018. The second kind of historical prece-
dence that we are motivated by are the different works which have shown how some of the desired
theorems about gradient descent can be proven if designed noise is injected into the algorithm in
judicious ways, (Raginsky, Rakhlin, and Telgarsky, 2017; Xu et al., 2018; Zhang, Liang, and Charikar,
2017; Durmus and Majewski, 2019; Lee, Mangoubi, and Vishnoi, 2019; Jin et al., 2018; Mou et al.,
2018; Li, Luo, and Qiao, 2019). Here we will be working with the simplest neural net which is just
a single ReLU gate mapping Rn ∋ x ↦→ max{0, w⊤x} ∈ R for w ∈ Rn being its weight. In here
already the corresponding empirical or the population risk is neither convex nor smooth in how it
depends on the weights. Thus to the best of our knowledge none of the convergence results among
these provable noise assisted algorithms cited above can be directly applied to this case because these
proofs crucially leverage either convexity or very strong smoothness assumptions on the optimiza-
tion objective. We show 3 kinds results in this chapter.

In Section 3.3 we have shown a very simple iterative stochastic algorithm to recover the underlying
parameter w∗ of the ReLU gate when realizable data allowed to be sampled online is of the form
(x, max{0, w⊤∗ x}). The distributional condition is very mild which essentially just captures the intu-
ition that enough of our samples are such that w⊤∗ x > 0.

Not only is our algorithm’s run-time near-optimal, but to the best of our knowledge the previous
attempts at this problem have solved this only for the Gaussian distribution (Soltanolkotabi, 2017;
Kalan, Soltanolkotabi, and Avestimehr, 2019). Some results like Goel, Klivans, and Meka, 2018 in-
cluded a solution to this above problem as a special case of their result while assuming that the the
data distribution is having a p.d.f symmetric about the origin. Thus in contrast to all previous at-
tempts our assumptions on the distribution are significantly milder.

In Section 3.4 we show the first-of-its-kind analysis of gradient descent on a ReLU gate albeit when
assisted with the injection of certain kinds of noise. We assume that the labels in the data are realiz-
able but we make no assumptions on the distribution of the domain. We make progress by showing
that such a noise assisted GD in such a situation has a “diffusive” behaviour about the global minima
i.e after T steps of the algorithm starting from anywhere, w.h.p all the steps of the algorithm have been
within

√
T distance of the global minima of the function. The key idea here is that of “coupling”

which shows that from the iterates of noise injected gradient descent on the squared loss of a ReLU
gate one can create a discrete bounded difference super-martingale.

Remark. We would like to emphasize to the reader that in such a distribution free regime as above,
no algorithm is expected to provably train. Also note that the result is parametric in the magnitude of
the added noise and hence one can make the algorithm be arbitrarily close to being a pure gradient
descent.

In Section 3.5 we re-analyze a known algorithm called “GLM-Tron” under more general conditions
than previously to show how well it can do (empirical) risk minimization on any Lipschitz gate with
Lipschitz constant < 2 (in particular a ReLU gate) in the noisily realizable setting while no assump-
tions are being made on the distribution of the noise beyond their boundedness - hence the noise can
be “adversarial”. We also point out how the result can be improved under some assumptions on the
noise making it more benign. Note that in contrast to the training result in Section 3.3 which used
a stochastic algorithm, here we are using full-batch iterative updates to gain these extra abilities to
deal with more general gates, (adversarial) noise and essentially no distributional assumptions on
training data.
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3.3 Almost distribution free learning of a ReLU gate

If data, x, is being sampled from a distribution D and the corresponding true labels are being gen-
erated from a ReLU gate as max{0, w⊤∗ x} for some w∗ ∈ Rn unknown to us, then the question of
learning this ReLU gate in this realizable setting is essentially the task of trying to solve the follow-

ing optimization problem while having only sample access to D, minw∈Rn Ex∼D

[︂(︂
max{0, w⊤x} −

max{0, w⊤∗ x}
)︂2]︂

In contrast to all previous work we show the following simple algorithm which solves this learning
problem to arbitrarily good accuracy assuming only very mild conditions on D. We leverage the
simple intuition that if we can get to see enough labels y = max{0, w⊤∗ x} where y > 0 then w∗ is just
the answer to the linear regression problem on those samples.

Algorithm 2 Modified SGD for a ReLU gate

1: Input: Sampling access to a distribution D on Rn.
2: Input: Oracle access to the true labels when queried with some x ∈ Rn

3: Input: An arbitrarily chosen starting point of w1 ∈ Rn and a constant α < 0
4: for t = 1, . . . do
5: Sample xt ∼ D and query the oracle with it.
6: The oracle replies back with yt = max{0, w⊤∗ xt}
7: Form the gradient-proxy,

gt := α1yt>0(yt − w⊤
t xt)xt

8: wt+1 := wt − ηgt
9: end for

Theorem 3.3.1. We assume that the the data distribution D is s.t E
[︂
∥x∥4

]︂
and the covariance ma-

trix E
[︂
xx⊤

]︂
exist. Suppose w∗ is s.t E

[︂
1w⊤∗ x>0xx⊤

]︂
is positive definite. Then if Algorithm 2 is

run with α < 0 and η =
λmin

(︂
E

[︂
1

w⊤∗ x>0
xx⊤
]︂)︂

|α|E
[︂

1
w⊤∗ x>0

·∥x∥4
]︂ starting from starting from w1 ∈ Rn then for T =

O
(︂

log ∥w1−w∗∥2

ϵ2δ

)︂
we would have,

P
[︂
∥wT − w∗∥2 ≤ ϵ2

]︂
≥ 1 − δ

It’s clear that ∥wT − w∗∥2 ≤ ϵ2 =⇒ Ex∼D

[︂(︂
max{0, w⊤

T x} − max{0, w⊤∗ x}
)︂2]︂

≤ ϵ2E
[︂
∥x∥2

]︂
and

hence Algorithm 2 is in effect approximately solving the risk minimization problem that we set out
to solve. Also note that (a) the above convergence hold starting from arbitrary initialization w1, (b)
the proof will establish along the way that the assumptions being made in the theorem are enough to
ensure that the choice of η above is strictly positive and (c) for ease of interpretation we can just set
α = −1 in the above and observe how closely the choice of gt in Algorithm 2 resembles the stochastic
gradient that is commonly used and is known to have great empirical success.

Proof of Theorem 3.3.1. Let the training data sampled till the iterate t be St = {(x1, y1), . . . , (xt, yt)}
From the algorithm we know that the weight vector update at t-th iteration is wt+1 = wt + ηgt. Thus,

∥wt+1 − w∗∥2 = ∥wt − ηgt − w∗∥2

= ∥wt − w∗∥2 + η2∥gt∥2 − 2η⟨wt − w∗, gt⟩ (3.1)
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We overload the notation to also denote by St the σ−algebra generated by the random variables
x1, ..., xt. Conditioned on St−1, wt is determined while wt+1 and gt are random and dependent on
the random choice of xt.

E(xt ,yt)

[︂
∥wt+1 − w∗∥2 | St−1

]︂
= E(xt ,yt)

[︂
∥wt − w∗∥2 | St−1

]︂
+ (−2αη)E(xt ,yt)

[︂⟨︂
wt − w∗, 1yt>0

(︂
yt − w⊤

t xt

)︂
xt

⟩︂
| St−1

]︂
⏞ ⏟⏟ ⏞

Term 1

+ η2E(xt ,yt)

[︂
∥gt∥2 | St−1

]︂
⏞ ⏟⏟ ⏞

Term 2

(3.2)

Now we simplify the last two terms of the RHS above, starting from the rightmost,

Term 2 = E

[︄
∥ηgt∥2 | St−1

]︄
= η2α2E

[︄
1yt>0(yt − wt

⊤xt)
2 · ∥xt∥2 | St−1

]︄

= η2α2 · E

[︄
1yt>0

(︁
max{0, w⊤

∗ xt} − w⊤
t xt
)︁2 · ∥xt∥2 | St−1

]︄

≤ η2α2E

[︄
1yt>0∥w∗ − wt∥2 · ∥xt∥4 | St−1

]︄

≤ η2α2∥w∗ − wt∥2 × E

[︄
1w⊤∗ xt>0 · ∥xt∥4

]︄

Note that in the above step the quantity, E
[︂
1w⊤∗ x>0 · ∥x∥4

]︂
is finite and it is easy to see why this is true

given that ∀ w∗, E
[︂
1w⊤∗ x>0 · ∥x∥4

]︂
≤ E

[︂
∥x∥4

]︂
and we recall that the quantity in this upperbound has

been assumed to be finite in the hypothesis of the theorem.

Now we simplify Term 1 to get,

Term1 = −2ηαE

[︄
1yt>0

(︂
yt − w⊤

t xt

)︂
· (wt − w∗)⊤xt

⃓⃓⃓⃓
St−1

]︄

= −2ηαE

[︄
1yt>0

(︂
max{0, w⊤

∗ xt} − w⊤
t xt

)︂
× (wt − w∗)⊤xt

⃓⃓⃓⃓
St−1

]︄

≤ −2ηαE

[︄
(w∗ − wt)

⊤1yt>0xtx⊤t (wt − w∗)
⃓⃓⃓⃓
St−1

]︄

≤ −2η|α|E
[︄
(wt − w∗)⊤1yt>0xtx⊤t (wt − w∗)

⃓⃓⃓⃓
St−1

]︄

≤ −2η|α|λmin

(︂
E

[︄
1w⊤∗ xt>0>0xtx⊤t

]︄)︂
∥wt − w∗∥2 (3.3)

In the above step we invoked that the quantity E

[︄
1w⊤∗ xt>0>0xtx⊤t

]︄
exists and its easy to see why this

is true given that ∀ w∗, E

[︄
1w⊤∗ x>0xx⊤

]︄
≤ E

[︄
xx⊤

]︄
and we recall that the covariance occurring of the

distribution has been assumed to be finite in the hypothesis of the theorem.
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We can combine both the upper bounds obtained above into the RHS of equation (3.2) to get,

E(xt ,yt)

[︂
∥wt+1 − w∗∥2 | St−1

]︂
≤
(︄

1 − 2η|α| × λmin

(︂
E
[︂
1w⊤∗ xt>0xtx⊤t

]︂)︂
+ η2α2 × E

[︂
1w⊤∗ xt>0 · ∥xt∥4

]︂)︄
∥wt − w∗∥2 (3.4)

We note that the two expectations on the RHS are properties of the distribution of the data x i.e D and
w∗ and we make the notation explicitly reflect that. xt is a random variable that is independent of wt
since xt is independent of x1, . . . , xt−1. Hence by taking total expectation of the above we have,

E
[︂
∥wt+1 − w∗∥2

]︂
≤
(︄

1 − 2η|α|λmin

(︂
E
[︂
1w⊤∗ x>0xx⊤

]︂)︂
+ η2α2 × E

[︂
1w⊤∗ x>0 · ∥x∥4

]︂)︄
E
[︂
∥wt − w∗∥2

]︂
(3.5)

Now we see that for Xt := E
[︂
∥wt − w∗∥2

]︂
the above is a recursion of the form given in Lemma 3.E.1

with c2 = 0, C = ∥w1 − w∗∥2, η′ = η|α|, b = 2λmin

(︂
E
[︂
1w⊤∗ x>0xx⊤

]︂)︂
and c1 = E

[︂
1w⊤∗ x>0 · ∥x∥4

]︂
Now we note the following inequality,

E
[︂
1w⊤∗ x>0 · ∥x∥4

]︂
= E

[︂
1w⊤∗ x>0 · (x⊤x)2

]︂
= E

[︂(︂
(1

1
4
w⊤∗ x>0

x)⊤(1
1
4
w⊤∗ x>0

x)
)︂2]︂

= E
[︂(︂

Tr
(︂
(1

1
4
w⊤∗ x>0

x)⊤(1
1
4
w⊤∗ x>0

x)
)︂)︂2]︂

= E
[︂(︂

Tr
(︂

1
1
2
w⊤∗ x>0

xx⊤
)︂)︂2]︂

We note that the function Rn×n ∋ Y ↦→ Tr2(Y) ∈ R is convex and hence by Jensen’s inequality we
have,

E
[︂
1w⊤∗ x>0 · ∥x∥4

]︂
≥

2
Tr(E

[︂
1

1
2
w⊤∗ x>0

xx⊤
]︂
) =

(︂ n

∑
i=1

λi

(︂
E
[︂
1w⊤∗ x>0xx⊤

]︂)︂)︂2
≥ n2λ2

min

(︂
E
[︂
1w⊤∗ x>0xx⊤

]︂)︂

In the above λi indicates the ith largest eigenvalue of the PSD matrix in its argument. And in partic-
ular the above inequality implies that c1 > b2

4 . Now we recall that the assumptions in the theorem
which ensure that b > 0 and hence now we have b

c1
> 0 and hence the step-length prescribed in the

theorem statement is strictly positive.

Thus by invoking the first case of Lemma 3.E.1 we have that for η′ = η|α| = b
2c1

we have ∀ϵ′ > 0,

E
[︂
∥wT − w∗∥2

]︂
≤ ϵ′2 for T = O

(︂
log ∥w1−w∗∥2

ϵ′2

)︂
Thus given a ϵ > 0, δ ∈ (0, 1) we choose ϵ′2 = ϵ2δ and then by Markov inequality we have what we
set out to prove,

P
[︂
∥wT − w∗∥2

]︂
≤ ϵ2

]︂
≥ 1 − δ
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3.4 Dynamics of noise assisted gradient descent on a single ReLU
gate

As noted earlier it remains a significant challenge to prove the convergence of SGD or GD for a ReLU
gate except for Gaussian data distributions. Towards this open question, we draw inspiration from
ideas in Lee, Mangoubi, and Vishnoi, 2019 and we focus on analyzing a noise assisted version of
gradient dynamics on a ReLU gate in the realizable case as given in Algorithm 3. In this setting we
will see that we have some non-trivial control on the behaviour of the iterates despite making no
distributional assumptions about the training data beyond realizability.

Algorithm 3 Noise Assisted Gradient Dynamics on a single ReLU gate (realizable data)

1: Input: We assume being given a step-length sequence {ηt}t=1,2,... and {(xi, yi)}i=1,...,S tuples
where yi = fw∗(xi) for some w∗ ∈ Rn where fw is s.t

Rn ∋ x ↦→ fw(x) = ReLU(w⊤x) = max{0, w⊤x} ∈ R

2: Start at w0
3: for t = 0, . . . do
4: Choice of Sub-Gradient := gt = − 1

S ∑S
i=1 1w⊤

t xi≥0

(︂
yi − fwt(xi)

)︂
xi

5: wt+1 := wt − ηt(gt + ξt,1) +
√

ηtξt,2 ▷ ξt,1 is 0 mean bounded random variable

6: ▷ ξt,2 is a 0 mean random variable s.t E
[︂
∥ξt,2∥2

]︂
< n

7: end for

Note that in the above algorithm the indicator functions occurring in the definition of gt are for the
condition w⊤

t xi ≥ 0 for the ith−data point. Whereas for the gt used in Algorithm 2 in the previous
section the indicator was for the condition yt > 0 and hence dependent on w∗ rather than wt.

Theorem 3.4.1. We analyze Algorithm 3 with constant step length ηt = η Let C := maxi=1,...,S∥xi∥,

S1 > 0 be s.t ∀t = 1, . . . , ∥ξt,1∥ ≤ S1 and {ξt,2}t=1,... be mean 0, i.i.d as say ξ2 s.t E
[︂
∥ξt,2∥2

]︂
< n, ∀t =

1, . . .

Then for any imax ∈ Z+, λ > 0, CL ∈ (0,
√

n), 0 < η < 1
C2

√
2imax

and r2∗ ≥ λ + ∥w0 − w∗∥2 +

imax

{︂
2η2(C4r2∗ + S2

1) + ηn
}︂

we have,

P

[︄
∃i ∈ {1, . . . , imax} | ∥wi − w∗∥ > r∗

]︄

≤ imax

(︄
P
[︂
∥ξ2∥ > CL

]︂
+ exp

{︄
− λ2

2imax
× 1

2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2∗ + 2η(C4r2∗ + S2

1)
)︂}︄)︄

Remark. Thus for η small enough and if P
[︂
∥ξ2∥ > CL

]︂
is small then with significant probability the

noise assisted gradient dynamics on a single ReLU gate in its first imax steps remains confined inside
a ball around the true parameter of radius,

r∗ ≥
√︄

λ + ∥w0 − w∗∥2 + imax(ηd + 2η2S2
1)

1 − 2imaxη2C4

Larger the λ > 0 we choose greater the (exponential) suppression in the probability that we get of
finding the iterates outside the ball of radius r∗ around the origin whereby r∗ scales as

√
λ.

Also we note that for the above two natural choices of the distribution for {ξt,2, t = 1, . . .} are (a)
{ξt,2 = 0, t = 1, . . .} and (b) {(ξt,2)i ∼ N(0, σi), i = 1, . . . , n, t = 1, . . .} where the {σi, i = 1, . . . , n}
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can be chosen as follows : corresponding to this choice of distributions we invoke Equation 3.5 from

Ledoux and Talagrand, 2013 to note that P
[︂
∥ξ2∥ > CL

]︂
≤ 4e

− C2
L

8×E

[︂
∥ξ2∥2

]︂
. Thus for the guarantee

in the theorem to be non-trivial we need, e

− C2
L

8×E

[︂
∥ξ2∥2

]︂
< 1

4imax
. Now note that E

[︂
∥ξ2∥2

]︂
= ∑n

i=1 σ2
i

and hence the above condition puts a smallness constraint on the variances of the Gaussian noise

depending on how large an imax we want, ∑n
i=1 σ2

i <
C2

L
8 log(4imax)

Proof of Theorem 3.4.1.
For convenience we will use the notation, g̃t := gt + ξt,1. Suppose that at the tth iterate we have that
∥wt − w∗∥ ≤ r∗. Given this we will get an upperbound on how far can wt+1 be from w∗. Towards
this we observe that,

∥wt+1 − w∗∥2 = ∥wt − ηtg̃t +
√

ηtξt,2 − w∗∥2

= ∥wt − w∗∥2 + ∥ − ηtg̃t +
√

ηtξt,2∥2 + 2⟨wt − w∗,−ηtg̃t +
√

ηtξt,2⟩ (3.6)

Expanding the second term above as, ∥ − ηtg̃t +
√

ηtξt,2∥2 = η2
t ∥g̃t∥2 + ηt∥ξt,2∥2 − 2η3/2

t ⟨g̃t, ξt,2⟩
and combining into 3.6, we have,

∥wt+1 − w∗∥2 − ∥wt − w∗∥2

= ⟨ξt,2,−2η3/2
t g̃t + 2

√
ηtwt − 2

√
ηtw∗⟩+ ηt∥ξt,2∥2 + η2

t ∥g̃t∥2 − 2ηt⟨wt − w∗, g̃t⟩
= ⟨ξt,2,−2η3/2

t g̃t + 2
√

ηtwt − 2
√

ηtw∗⟩+ ηt∥ξt,2∥2 + η2
t ∥g̃t∥2 − 2ηt⟨wt − w∗, ξt,1⟩

− 2ηt⟨wt − w∗, gt⟩
≤ −2ηt⟨wt − w∗, ξt,1⟩+ η2

t ∥g̃t∥2 + 2
√

ηt⟨ξt,2,−ηtg̃t + wt − w∗⟩+ ηt∥ξt,2∥2 (3.7)

In the last line we have used the Lemma 3.4.2 which shows this critical fact that ⟨wt − w∗, gt⟩ ≥ 0.

Now we use the definition g̃t = gt + ξt,1 on the 2nd term in the RHS of equation 3.7 to get,

∥wt+1 − w∗∥2 − ∥wt − w∗∥2

≤ −2ηt⟨wt − w∗, ξt,1⟩+ 2η2
t (∥gt∥2 + ∥ξt,1∥2) + 2

√
ηt⟨ξt,2,−ηtgt˜ + wt − w∗⟩+ ηt∥ξt,2∥2

≤ −2ηt⟨wt − w∗, ξt,1⟩+ 2η2
t (∥gt∥2 + S2

1)− 2
√

ηt⟨ξt,2, ηtg̃t⟩+ 2
√

ηt⟨ξt,2, wt − w∗⟩+ ηt∥ξt,2∥2

≤ 2η2
t (∥gt∥2 + S2

1) + ηtn +
[︂
− 2ηt⟨wt − w∗, ξt,1⟩ − 2

√
ηt⟨ξt,2, ηtg̃t⟩+ 2

√
ηt⟨ξt,2, wt − w∗⟩+ ηt(∥ξt,2∥2 − n)

]︂
(3.8)

Now we will get a finite bound on ∥gt∥2 by invoking the definition of r∗ and C as follows,

gt =
1
S

S

∑
i=1

(︂
yi − ReLU(w⊤

t xi)
)︂

1w⊤
t xi≥0(−xi) =⇒ ∥gt∥ ≤ 1

S
× C

S

∑
i=1

|(w∗ − wt)
⊤xi| ≤ C2r∗ (3.9)

Substituting this back into equation 3.8 we have,

∥wt+1 − w∗∥2 − ∥wt − w∗∥2

≤
{︂

2η2
t (C

4r2
∗ + S2

1) + ηtn
}︂

+
[︂
− 2ηt⟨wt − w∗, ξt,1⟩ − 2

√
ηt⟨ξt,2, ηtg̃t⟩+ 2

√
ηt⟨ξt,2, wt − w∗⟩+ ηt(∥ξt,2∥2 − n)

]︂
(3.10)
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3.4. Dynamics of noise assisted gradient descent on a single ReLU gate

We define w′
0 = w0 and ξ ′t,2 = min

{︂
CL, ∥ξt,2∥

}︂
ξt,2

∥ξt,2∥ and CL ∈ (0,
√

n).

Now we define a delayed stochastic process associated to the given algorithm,

w′
t+1 = w′

t1∥w′
t−w∗∥≥r∗ +

(︂
w′

t − ηtg̃t +
√

ηtξ
′
t,2

)︂
1∥w′

t−w∗∥<r∗

In the above we note that whenever the primed iterate steps out of the r∗ ball it is made to stop.
Associated to the above we define another stochastic process as follows,

zt := ∥w′
t − w∗∥2 − t

{︂
2η2

t (C
4r2

∗ + S2
1) + ηtn

}︂
(3.11)

In Lemma 3.4.3 we prove the crucial property that for ηt = η > 0 a constant, the stochastic process
{zt}t=0,1,... is a bounded difference process i.e |zt+1 − zt| ≤ k for all t = 1, . . . and

k = 2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2

∗ + 2η(C4r2
∗ + S2

1)
)︂

Now note that z0 is a constant since w0 is so. The proof of Lemma 3.4.3 splits the analysis into two
cases which we revisit again : in Case 1 in there we have zt+1 − zt < 0 for ηt = η > 0. And in Case
2 therein we take a conditional expectation of the RHS of equation 3.16 w.r.t the sigma-algebra Ft
generated by {z0, . . . , zt}. Then the first two terms will go to 0 and the last term will give a negative
contribution since ∥ξ ′t,2∥ ≤ CL and C2

L < n by definition.

Thus the stochastic process z0, . . . satisfies the conditions of the concentration of measure Theorem
3.D.1 and thus we get that for any λ > 0 and t > 0 and k as defined above,

P
[︂
zt − z0 ≥ λ

]︂
≤ e−

λ2
2tk

And explicitly the above is equivalent to,

P
[︂
∥w′

t − w∗∥2 − t
{︂

2η2(C4r2
∗ + S2

1) + ηn
}︂
− ∥w0 − w∗∥2 ≥ λ

]︂
≤ exp

{︄
− λ2

2t
× 1

2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2∗ + 2η(C4r2∗ + S2

1)
)︂}︄ (3.12)

The definition of r∗ given in the theorem statement is that it satisfies, r2∗ ≥ λ + ∥w0 − w∗∥2 +

t
{︂

2η2(C4r2∗ + S2
1) + ηn

}︂
. Then the following is implied by equation 3.12,

P
[︂
∥w′

t − w∗∥2 ≥ r2
∗
]︂

≤ exp

{︄
− λ2

2t
× 1

2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2∗ + 2η(C4r2∗ + S2

1)
)︂}︄ (3.13)

For the given positive integer imax consider the event,

E :=
{︂
∃i ∈ {1, . . . , imax} | ∥wi − w∗∥ > r∗

}︂
(3.14)

Define the event Et := {∥ξt,2∥ > CL}. Thus, if Et never happens, then the primed and the unprimed
sequences both evolve the same unless w′

t leaves the r∗ ball around w∗ i.e., w′
t and wt both leave the

r∗ ball around w∗.
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Chapter 3. Provable Training of a ReLU gate

The sample space can be written as a disjoint union of events A := ∪imax
t=1 Et and B := ∩imax

t=1 Ec
t .

Let Lt be the event that t is the first time instant when wt leaves the ball. Let L′
t be the event that t

is the first time instant when w′
t leaves the ball. And we have argued above that when B happens

the two sequences evolve the same which in turn implies B ∩ Lt = B ∩ L′
t. Thus we have, P

[︂
Lt

]︂
=

P
[︂

Lt ∩ A
]︂
+ P

[︂
Lt ∩ B

]︂
= P

[︂
Lt ∩ A

]︂
+ P

[︂
L′

t ∩ B
]︂

And combining this with E defined in 3.14 we have,

P
[︂

E
]︂
=

imax

∑
t=1

P
[︂

Lt

]︂
=

imax

∑
t=1

(︂
P
[︂

Lt ∩ A
]︂
+ P

[︂
L′

t ∩ B
]︂)︂

≤ P
[︂

A
]︂
+

imax

∑
t=1

P
[︂

L′
t

]︂
≤

imax

∑
t=1

(︂
P
[︂

Et

]︂
+ P

[︂
L′

t

]︂)︂

The first equality and the first inequality above are true because Lt are disjoint events.

We further note that, P
[︂

L′
t

]︂
≤ P

[︂
∥w′

t − w∗∥ > r∗
]︂

Hence combining the above two inequalities we have,

P

[︄
∃i ∈ {1, . . . , imax} | ∥wi − w∗∥ > r∗

]︄
≤

imax

∑
t=1

(︂
P
[︂
∥ξt,2∥ > CL

]︂
+ P

[︂
∥w′

t − w∗∥ > r∗
]︂)︂

We invoke (a) the definition of the random variable ξ2 and (b) equation 3.13 on each of the summands
in the RHS above and we can infer that,

P

[︄
∃i ∈ {1, . . . , imax} | ∥wi − w∗∥ > r∗

]︄

≤ imax

(︄
P
[︂
∥ξ2∥ > CL

]︂
+ exp

{︄
− λ2

2imax
× 1

2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2∗ + 2η(C4r2∗ + S2

1)
)︂}︄)︄

This proves the theorem we wanted.
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3.4. Dynamics of noise assisted gradient descent on a single ReLU gate

Lemma 3.4.2. ⟨wt − w∗, gt⟩ ≥ 0

Proof. We can obtain a (positive) lower bound on the inner product term ⟨wt − w∗, gt⟩,

⟨wt − w∗, gt⟩

= − 1
S

S

∑
i=1

⟨︂
wt − w∗,

(︂
yi − ReLU(w⊤

t xi)
)︂

1(w⊤
t xi ≥ 0)xi

⟩︂
= − 1

S

S

∑
i=1

(︂
w⊤

t xi − w∗⊤xi

)︂(︂
ReLU(w∗⊤xi)− ReLU(w⊤

t xi)
)︂

1(w⊤
t xi ≥ 0)

=
1
S

S

∑
i=1

(︂
w∗⊤xi − w⊤

t xi

)︂(︂
ReLU(w∗⊤xi)− ReLU(w⊤

t xi)
)︂

1(w⊤
t xi ≥ 0)

≥ 1
S

S

∑
i=1

(︂
ReLU(w∗⊤xi)− ReLU(w⊤

t xi)
)︂2

1(w⊤
t xi ≥ 0)

Lemma 3.4.3. If for all t = 0, . . . we have ηt = η a constant > 0 then the stochastic process {zt}t=0,1,...
defined in equation 3.11 is a bounded difference stochastic process i.e there exists a constant k > 0 s.t
for all t = 1, . . ., |zt+1 − zt| ≤ k

Proof. We have 2 cases to consider.

Case 1 : ∥w′
t − w∗∥ ≥ r∗

zt+1 − zt = −(t + 1)(2η2
t+1(C

4r2
∗ + S2

1) + ηt+1n) + t(2η2
t (C

4r2
∗ + S2

1) + ηtn) (3.15)

= 2(C4r2
∗ + S2

1)
{︂

tη2
t − (t + 1)η2

t+1

}︂
+ n

{︂
tηt − (t + 1)ηt+1

}︂
Case 2 : ∥w′

t − w∗∥ < r∗
Repeating the calculations as used to get equation 3.10 but with ξ ′t,2 instead of ξt,2 we will get,

zt+1 − zt ≤ −2ηt⟨wt − w∗, ξt,1⟩ − 2
√

ηt⟨ξ ′t,2, ηtg̃t⟩+ 2
√

ηt⟨ξ ′t,2, wt − w∗⟩+ ηt(∥ξ ′t,2∥2 − n) (3.16)

And by Cauchy-Schwartz the above implies,

zt+1 − zt ≤ 2ηtS1r∗ + 2
√

ηt(r∗ + ηt(C2r∗ + S1))CL + ηt(C2
L − d) (3.17)

Further repeating the calculations as used to get equation 3.10 but with ξ ′t,2 instead of ξt,2 we will get,

∥w′
t − w∗∥2 − ∥w′

t+1 − w∗∥2 ≤ 2ηtr∗(∥gt∥+ ∥ξt,1∥) + 2
√

ηt

⟨︂
ξ ′t,2,−ηtg̃t + (wt − w∗)

⟩︂
In the above we invoke the definition of S1 and equation 3.9 to get,

∥w′
t − w∗∥2 − ∥w′

t+1 − w∗∥2 ≤ 2ηtr∗(C2r∗ + S1) + 2
√

ηt

⟨︂
ξ ′t,2,−ηtg̃t + (wt − w∗)

⟩︂
≤ 2ηtr∗(C2r∗ + S1) + 2

√
ηtCL(ηt(C2r∗ + S1) + r∗)

Hence we have,
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zt − zt+1 ≤ 2η2
t (C

4r2
∗ + S2

1) + ηtn + 2ηtr∗(C2r∗ + S1) + 2
√

ηtCL(ηt(C2r∗ + S1) + r∗) (3.18)

Combining equations 3.17 and 3.18 we have,

|zt − zt+1| ≤ 2ηtS1r∗ + 2
√

ηtCL

(︂
r∗ + ηt(C2r∗ + S1)

)︂
+ max

{︂
ηt(C2

L − n), ηt

[︂
(n + 2C2r2

∗) + 2ηt(C4r2
∗ + S2

1)
]︂}︂

(3.19)

If we now invoke the that ηt = η, a positive constant then the above and the previous equation 3.15
can be further combined to get for all t = 0, . . .,

|zt − zt+1| ≤ max

{︄
nη + 2(C4r2

∗ + S2
1)η

2

, 2ηS1r∗ + 2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ max

{︂
η(C2

L − n), η
[︂
(n + 2C2r2

∗) + 2η(C4r2
∗ + S2

1)
]︂}︂}︄

≤ max

{︄
nη + 2(C4r2

∗ + S2
1)η

2

, 2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2

∗ + 2η(C4r2
∗ + S2

1)
)︂}︄

≤ 2
√

ηCL

(︂
r∗ + η(C2r∗ + S1)

)︂
+ η

(︂
2S1r∗ + n + 2C2r2 + 2η(C4r2

∗ + S2
1)
)︂

(3.20)

In the second inequality above we are using invoking our assumption that C2
L < n. And this proves

the boundedness of the stochastic process {zt} as we set out to prove and a candidate k is the RHS
above.

3.5 GLM-Tron converges on certain Lipschitz gates with no sym-
metry assumption on the data

Algorithm 4 GLM-Tron

1: Input: {(xi, yi)}i=1,...,m and an “activation function” σ : R → R

2: w1 = 0
3: for t = 1, . . . do
4: wt+1 := wt +

1
m ∑m

i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂
xi ▷ Define ht(x) := σ

(︂
⟨wt, x⟩

)︂
5: end for

First we state the following crucial lemma,

Lemma 3.5.1. Assume that for all i = 1, . . . , S ∥xi∥ ≤ 1 and in Algorithm 4, σ is a L−Lipschitz non-
decreasing function. Given any w and W s.t at iteration t, we have ∥wt − w∥ ≤ W, define η > 0 s.t

∥ 1
S ∑S

i=1

(︂
yi − σ(⟨w, xi⟩)

)︂
xi∥ ≤ η. Then it follows that ∀t = 1, 2, . . .,

∥wt+1 − w∥2 ≤ ∥wt − w∥2 −
(︂ 2

L
− 1
)︂

L̃S(ht) +
(︂

η2 + 2ηW(L + 1)
)︂

where we have defined, L̃S(ht) := 1
S ∑S

i=1

(︂
ht(xi)−σ(⟨w, xi⟩)

)︂2
= 1

S ∑S
i=1

(︂
σ(⟨wt, xi⟩)−σ(⟨w, xi⟩)

)︂2
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The above algorithm was introduced in Kakade et al., 2011 for bounded activations. Here we show
the applicability of that idea for more general activations and also while having adversarial attacks on
the labels. We give the proof of the above Lemma in Appendix 3.A. Now we will see in the following
theorem and its proof as to how the above Lemma leads to convergence of the “effective-ERM”, L̃S
by GLM-Tron on a single gate.

Theorem 3.5.2. [GLM-Tron (Algorithm 4) solves the effective-ERM on a ReLU gate upto noise
bound with minimal distributional assumptions] Assume that for all i = 1, . . . , S ∥xi∥ ≤ 1 and
the label of the ith data point yi is generated as, yi = σ(⟨w∗, xi⟩) + ξi s.t ∀i, |ξi| ≤ θ for some θ > 0
and w∗ ∈ Rn. If σ is a L−Lipschitz non-decreasing function for L < 2 then in at most T = ∥w∗∥

ϵ
GLM-Tron steps we would attain parameter value wT s.t,

L̃S(hT) =
1
S

S

∑
i=1

(︂
σ(⟨wT , xi⟩)− σ(⟨w∗, xi⟩)

)︂2
<

L
2 − L

(︂
ϵ + (θ2 + 2θW(L + 1))

)︂

Remark. Firstly Note that in the realizable setting i.e when θ = 0, the above theorem is giving an
upperbound on the number of steps needed to solve the ERM on say a ReLU gate to O(ϵ) accuracy.
Secondly observe that the above theorem does not force any distributional assumption on the ξi be-
yond the assumption of its boundedness. Thus the noise could as well be chosen “adversarially”
upto the constraint on its norm.

The above Theorem is proven in Appendix 3.B. If we make some assumptions on the noise being
somewhat benign then we can get the following.

Theorem 3.5.3 (Performance guarantees on the GLM-Tron (Algorithm 4) in solving the ERM prob-
lem with data labels being output of a ReLU gate corrupted by benign noise). Assume that the
noise random variables ξi, i = 1, . . . , S are identically distributed as a centered random variable say
ξ. Then for T = ∥w∥

ϵ , we have the following guarantee on the (true) empirical risk after T iterations
of GLM-Tron (say L̃S(hT)),

E{(xi ,ξi)}i=1,...S

[︂
LS(hT)

]︂
≤ Eξ [ξ

2] +
L

2 − L

(︂
ϵ + (θ2 + 2θW(L + 1))

)︂

The above is proven in Appendix 3.C. Here we note a slight generalization of the above that can be
easily read off from the above.

Corollary 3.5.4. Suppose that instead of assuming ∀i = 1, . . . , S |ξi| ≤ θ we instead assume that the

joint distribution of {ξi}i=1,...,S is s.t P
[︂
|ξi| ≤ θ ∀i ∈ {1, . . . , S}

]︂
≥ 1 − δ Then it would follow that

the guarantee of the above Theorem 3.5.3 still holds but now with probability 1 − δ over the noise
distribution.
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3.6 Conclusion

In this chapter we have initiated a number of directions of investigation towards understanding
the trainability of finite sized nets while making minimal assumptions about the distribution of the
data. A lot of open questions emanate from here which await answers. Of them we would like to
particularly emphasize the issue of seeking a generalization of the results of Section 3.3 and Section
3.4 to single filter depth 2 nets as given in Definition 16 below, which in many ways can be said to be
the next more complicated case to consider,

Definition 16 (Single Filter Neural Nets Of Depth 2). Given a set of k matrices Ai ∈ Rr×n, a w ∈ Rr

and an activation function σ : R → R we call the following depth 2, width k neural net to be a “single
filter neural net” defined by the matrices A1, . . . , Ak

Rn ∋ x ↦→ fw(x) =
1
k

k

∑
i=1

σ
(︂

w⊤Aix
)︂
∈ R

and where σ is the “Leaky-ReLU” which maps as, R ∋ y ↦→ σ(y) = y1y≥0 + αy1y<0 for some α ≥ 0

Note that the above class of nets includes any single ReLU gate for α = 0, k = 1, A1 = In×n and it also
includes any depth 2 convolutional neural net with a single filter by setting the A′

is to be 0/1 matrices
such that each row has exactly one 1 and each column has at most one 1.

We would like to point out that towards this goal it would be interesting to settle a critical intermedi-
ate problem which is to know whether the sequence of random variables generated by noisy gradient
descent on a ReLU gate as given in Algorithm 3 have distributional convergence and if they do then
to find the corresponding rate.
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3.A. Proof of Lemma 3.5.1

Appendix To Chapter 3

3.A Proof of Lemma 3.5.1

Proof. We observe that,

∥wt − w∥2 − ∥wt+1 − w∥2 = ∥wt − w∥2 − ∥
(︂

wt +
1
S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂
xi

)︂
− w∥2

= − 2
S

S

∑
i=1

⟨︂(︂
yi − σ(⟨wt, xi⟩)

)︂
xi, wt − w

⟩︂
− ∥ 1

S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂
xi∥2

=
2
S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂(︂
⟨w, xi⟩ − ⟨wt, xi⟩

)︂
− ∥ 1

S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂
xi∥2

(3.21)

Analyzing the first term in the RHS above we get,

2
S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂(︂
⟨w, xi⟩ − ⟨wt, xi⟩

)︂
=

2
S

S

∑
i=1

(︂
yi − σ(⟨w, xi⟩) + σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂(︂
⟨w, xi⟩ − ⟨wt, xi⟩

)︂
=

2
S

S

∑
i=1

⟨︂(︂
yi − σ(⟨w, xi⟩)

)︂
xi, w − wt

⟩︂
+

2
S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂(︂
⟨xi, w⟩ − ⟨xi, wt⟩

)︂
≥ −2ηW +

2
S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂(︂
⟨xi, w⟩ − ⟨xi, wt⟩

)︂

In the first term above we have invoked the definition of η and W given in the Lemma. Further since
we are given that σ is non-decreasing and L−Lipschitz, we have for the second term in the RHS
above,

2
S ∑S

i=1

(︂
σ(⟨w, xi⟩)−σ(⟨wt, xi⟩)

)︂(︂
⟨xi, w⟩− ⟨xi, wt⟩

)︂
≥ 2

SL ∑S
i=1

(︂
σ(⟨w, xi⟩)−σ(⟨wt, xi⟩)

)︂2
=: 2

L L̃S(ht)

Thus together we have,

2
S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂(︂
⟨w, xi⟩ − ⟨wt, xi⟩

)︂
≥ −2ηW +

2
L

L̃S(ht) (3.22)

Now we look at the second term in the RHS of equation 3.21 and that gives us,
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∥ 1
S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂
xi∥2 = ∥ 1

S

S

∑
i=1

(︂
yi − σ(⟨w, xi⟩) + σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥2

≤ ∥ 1
S

S

∑
i=1

(︂
yi − σ(⟨w, xi⟩)

)︂
xi∥2 + 2∥ 1

S

S

∑
i=1

(︂
yi − σ(⟨w, xi⟩)

)︂
xi∥ × ∥ 1

S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥

+ ∥ 1
S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥2

≤ η2 + 2η∥ 1
S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥+ ∥ 1

S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥2 (3.23)

Now by Jensen’s inequality we have,

∥ 1
S ∑S

i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥2 ≤ 1

S ∑S
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂2
= L̃S(ht)

And we have from the definition of L and W,

∥ 1
S

S

∑
i=1

(︂
σ(⟨w, xi⟩)− σ(⟨wt, xi⟩)

)︂
xi∥ ≤ L

S

S

∑
i=1

∥w − wt∥ ≤ L × W

Substituting the above two into the RHS of equation 3.23 we have,

∥ 1
S

S

∑
i=1

(︂
yi − σ(⟨wt, xi⟩)

)︂
xi∥2 ≤ η2 + 2ηLW + L̃S(ht) (3.24)

Now we substitute equations 3.22 and 3.24 into equation 3.21 to get,

∥wt − w∥2 − ∥wt+1 − w∥2 ≥
(︂
− 2ηW +

2
L

L̃S(ht)
)︂
− (η2 + 2ηLW + L̃S(ht))

The above simplifies to the inequality we claimed in the lemma i.e,

∥wt+1 − w∥2 ≤ ∥wt − w∥2 −
(︂ 2

L
− 1
)︂

L̃S(ht) +
(︂

η2 + 2ηW(L + 1)
)︂

3.B Proof of Theorem 3.5.2

Proof. The equation defining the labels in the data-set i.e yi = σ(⟨w∗, xi⟩) + ξi with |ξi| ≤ θ along

with our assumption that, ∥xi∥ ≤ 1 implies that , ∥ 1
S ∑S

i=1

(︂
yi − σ(⟨w∗, xi⟩)

)︂
xi∥ ≤ θ. Thus we can

invoke the above Lemma 3.5.1 between the tth and the t + 1th iterate with η = θ and W as defined
there to get,

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 −
[︃(︂ 2

L
− 1
)︂

L̃S(ht)− (θ2 + 2θW(L + 1))
]︃

If L̃S(ht) ≥ L
2−L

(︂
ϵ + (θ2 + 2θW(L + 1))

)︂
then, ∥wt+1 − w∥2 ≤ ∥wt − w∥2 − ϵ. Thus if the above

lowerbound on L̃s(ht) holds in the tth step then at the start of the (t+ 1)th step we still satisfy, ∥wt+1 −
w∥ ≤ W. Since the iterations start with w1 = 0, in the first step we can choose W = ∥w∗∥. Thus in at
most ∥w∥

ϵ steps of the above kind we can have a decrease in distance of the iterate to w.
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Thus in at most T = ∥w∥
ϵ steps we have attained,

L̃S(hT) =
1
S

S

∑
i=1

(︂
σ(⟨wT , xi⟩)− σ(⟨w∗, xi⟩)

)︂2
<

L
2 − L

(︂
ϵ + (θ2 + 2θW(L + 1))

)︂
And that proves the theorem we wanted.

3.C Proof of Theorem 3.5.3

Proof. Let the true empirical risk at the Tth−iterate be defined as,

LS(hT) =
1
S

S

∑
i=1

(︂
σ(⟨wT , xi⟩)− σ(⟨w∗, xi⟩)− ξi

)︂2

Then it follows that,

L̃S(hT)− LS(hT) =
1
S

S

∑
i=1

(︂
σ(⟨wT , xi⟩)− σ(⟨w∗, xi⟩)

)︂2
− 1

S

S

∑
i=1

(︂
σ(⟨wT , xi⟩)− σ(⟨w∗, xi⟩)− ξi

)︂2

=
1
S

S

∑
i=1

ξi

(︂
− ξi + 2σ(⟨wT , xi⟩)− 2σ(⟨w∗, xi⟩)

)︂
= − 1

S

S

∑
i=1

ξ2
i +

2
S

S

∑
i=1

ξi

(︂
σ(⟨wT , xi⟩)− σ(⟨w∗, xi⟩)

)︂

By the assumption of ξi being an unbiased noise the second term vanishes when we compute,

E{(xi ,ξi)}i=1,...S

[︂
L̃S(hT)− LS(hT)

]︂
Thus we are led to,

E{(xi ,ξi)}i=1,...S

[︂
L̃S(hT)− LS(hT)

]︂
= − 1

m
E{ξi}i=1,...S

[︂ m

∑
i=1

ξ2
i

]︂
= − 1

m

m

∑
i=1

E{ξi}
[︂
ξ2

i

]︂
= −Eξ [ξ

2]

For T = ∥w∥
ϵ , we invoke the upperbound on L̃S(hT) from the previous theorem and we can combine

it with the above to say,

E{(xi ,ξi)}i=1,...S

[︂
LS(hT)

]︂
≤ Eξ [ξ

2] +
L

2 − L

(︂
ϵ + (θ2 + 2θW(L + 1))

)︂
This proves the theorem we wanted.

3.D Reviewing a variant of the Azuma-Hoeffding Inequality

Theorem 3.D.1. Suppose we have a real valued discrete stochastic process given as, {X0, Xi, . . .} and
the following properties hold,

• X0 is a constant

• (The bounded difference property) ∀i = 0, 1, . . . ∃ci > 0 s.t |Xi − Xi−1| ≤ ci

• (The super-martingale property) ∀i = 0, 1, . . ., E
[︂

Xi −Xi−1 | Fi−1

]︂
≤ 0 with Fi−1 = σ

(︂{︂
X0, . . . , Xi−1

}︂)︂
Then for any λ > 0 and a positive integer n we have the following concentration inequality,

P
[︂

Xn − X0 ≥ λ
]︂
≤ e

− 1
2

λ2

∑n
i=1 c2

i
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Proof. We note that for any c, t > 0, the function f (x) = etx lies below the straight line connecting the

two points (−c, f (−c)) and (c, f (c)). This gives the inequality, etx ≤ e−tc +
(︂

etc−e−tc

2c

)︂
(x + c). This

simplifies to,

etx ≤ 1
2c

(etc − e−tc)x +
(︂ etc + e−tc

2

)︂
(3.25)

Note that the above inequality holds only when |x| ≤ c Now we can invoke the bounded difference
property of |Xi − Xi−1| ≤ ci and use equation 3.25 with x = Xi − Xi−1 and c = ci to get,

E
[︂
et(Xi−Xi−1) | Fi−1

]︂
≤ E

[︂ etci − e−tci

2ci

(︂
Xi − Xi−1

)︂
+
(︂ etci + e−tci

2

)︂
| Fi−1

]︂
≤ etci + e−tci

2

The last inequality follows from the given property that, E
[︂

Xi − Xi−1 | Fi−1

]︂
≤ 0

Now we invoke the inequality ex+e−x

2 ≤ e
x2
2 on the RHS above to get,

E
[︂
et(Xi−Xi−1) | Fi−1

]︂
≤ e

t2c2
i

2

Further since Xi−1 is Fi−1 measurable we can write the above as, E
[︂
etXi | Fi−1

]︂
≤ etXi−1 e

t2c2
i

2

Now we recurse the above as follows,

E
[︂
etXn

]︂
= E

[︂
E
[︂
etXn | Fn−1

]︂]︂
≤ E

[︂
e

t2c2
n

2 etXn−1
]︂
= e

t2c2
n

2 E
[︂
etXn−1

]︂
. . . ≤

n

∏
i=1

e
t2c2

i
2 E[etX0 ]

Now invoking that X0 is a constant we can rewrite the above as, E
[︂
et(Xn−X0)

]︂
≤ e

t2
2 ∑n

i=1 c2
i

Hence for any λ > 0 we have by invoking the above,

P
[︂

Xn − X0 ≥ λ
]︂
= P

[︂
et(Xn−X0) ≥ etλ

]︂
≤ e−tλE

[︂
et(Xn−X0)

]︂
≤ e−tλe

t2
2 ∑n

i=1 c2
i

Now choose t = λ
∑n

i=1 c2
i

and we get, P
[︂

Xn − X0 ≥ λ
]︂
≤ e

− 1
2

λ2

∑n
i=1 c2

i
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3.E A recursion estimate

Lemma 3.E.1. Given constants η′, b, c1, c2 > 0 suppose one has a sequence of real numbers X1 =
C, X2, .. s.t,

Xt+1 ≤ (1 − η′b + η′2c1)Xt + η′2c2

Given any ϵ′ > 0 in the following two cases we have, XT ≤ ϵ′2

• If c2 = 0, c1 > b2

4 , C > 0, δ > 0,

η′ = b
2c1

and T = O
(︂

log C
ϵ′2

)︂
• If 0 < c2 ≤ c1, ϵ′2 ≤ C, b2

c1
≤
(︂√

ϵ′ + 1√
ϵ′

)︂2
,

η′ = b
c1
· ϵ′2
(1+ϵ′2) and T = O

(︄ log

(︃
ϵ′2(c1−c2)
Cc1−c2ϵ′2

)︃
log

(︃
1− b2

c1
· ϵ′2
(1+ϵ′2)2

)︃)︄ .

Proof. Suppose we define α = 1− η′b+ η′2c1 and β = η′2c2. Then we have by unrolling the recursion,

Xt ≤ αXt−1 + β ≤ α(αXt−1 + β) + β ≤ ... ≤ αt−1X1 + β
1 − αt−1

1 − α
.

We recall that X1 = C to realize that our Lemma gets proven if we can find T s.t,

αT−1C + β
1 − αT−1

1 − α
= ϵ′2

Thus we need to solve the following for T s.t, αT−1 = ϵ′2(1−α)−β
C(1−α)−β

Case 1 : β = 0 In this case we see that if η > 0 is s.t α ∈ (0, 1) then αT−1 = ϵ′2
C =⇒ T = 1 +

log C
ϵ2δ

log 1
α

But α = η′2c1 − η′b + 1 =
(︂

η′√c1 − b
2
√

c1

)︂2
+
(︂

1 − b2

4c1

)︂
Thus α ∈ (0, 1) is easily ensured by choosing

η′ = b
2c1

and ensuring c1 > b2

4 . This gives us the first part of the theorem.

Case 2 : β > 0

This time we are solving,

αT−1 =
ϵ′2(1 − α)− β

C(1 − α)− β
(3.26)

Towards showing convergence, we want to set η′ such that αt−1 ∈ (0, 1) for all t. Since ϵ′2 < C, it is
sufficient to require,

β < ϵ′2δ(1 − α) =⇒ α < 1 − β

ϵ′2
⇔ 1 − b2

4c1
+
(︂

η′√c1 −
b

2
√

c1

)︂2
≤ 1 − β

ϵ′2

⇔ η′2c2

ϵ′2
≤ b2

4c1
−
(︂

η′√c1 −
b

2
√

c1

)︂2
⇔ c2

ϵ′2
≤ b2

4c1η′2 −
(︂√

c1 −
b

2
√

c1η′
)︂2
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Set η′ = b
θc1

for some constant θ > 0 to be chosen such that,

c2

ϵ′2
≤ b2

4c1 · b2

θ2c2
1

−
(︂√

c1 −
b

2
√

c1 · b
θc1

)︂2
=⇒ c2

ϵ′2
≤ c1

θ2

4
− c1 ·

(︂ θ

2
− 1
)︂2

=⇒ c2 ≤ ϵ′2 · c1(θ − 1)

Since c2 ≤ c1 we can choose, θ = 1 + 1
ϵ′2 and we have αt−1 < 1. Also note that,

α = 1 + η′2c1 − η′b = 1 +
b2

θ2c2
1
− b2

θc1
= 1 − b2

c1
·
(︁1

θ
− 1

θ2

)︁
.

= 1 − b2

c1
· ϵ′2

(1 + ϵ′2)2 = 1 − b2

c1
· 1(︂

ϵ′ + 1
ϵ′

)︂2

And here we recall that the condition that the lemma specifies on the ratio b2

c1
which ensures that the

above equation leads to α > 0

Now in this case we get the given bound on T in the Lemma by solving equation 3.26. To see this,
note that,

α = 1 − b2

c1
· ϵ′2

(1 + ϵ′2)2 and β = η′2c2 =
b2

θ2c1
· c2 =

b2c2

c1
· (ϵ′2)2

(1 + ϵ′2)2 .

Plugging the above into equation 3.26 we get, αT−1 = ϵ′2δ(c1−c2)
Cc1−c2ϵ′2 =⇒ T = 1 +

log

(︃
ϵ′2(c1−c2)
Cc1−c2ϵ′2

)︃
log

(︃
1− b2

c1
· ϵ′2
(1+ϵ′2)2

)︃
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Chapter 4
Sparse Coding and Autoencoders

4.1 Introduction

One of the fundamental themes in learning theory is to consider data being sampled from a genera-
tive model and to provide efficient methods to recover the original model parameters exactly or with
tight approximation guarantees. Classic examples include learning a mixture of gaussians (Moitra
and Valiant, 2010), certain graphical models (Anandkumar et al., 2014), full rank square dictionar-
ies (Spielman, Wang, and Wright, 2012; Błasiok and Nelson, 2016) and overcomplete dictionaries
(Agarwal et al., 2014; Arora et al., 2014; Arora et al., 2015; Arora, Ge, and Moitra, 2014) The prob-
lem is usually distilled down to a non-convex optimization problem whose solution can be used to
obtain the model parameters. With these hard non-convex problems it has been difficult to find any
universal view as to why sometimes gradient descent gives very good and sometimes even exact
recovery. In recent times progress has been made towards achieving a geometric understanding of
the landscape of such non-convex optimization problems (Ge, Jin, and Zheng, 2017), (Mei, Bai, and
Montanari, 2016), (Wu, Zhu, et al., 2017). The corresponding question of parameter recovery for
neural nets with one layer of activation has been solved in some special cases, (Du, Lee, and Tian,
2017; Allen-Zhu, 2017; Janzamin, Sedghi, and Anandkumar, 2015; Sedghi and Anandkumar, 2014; Li
and Yuan, 2017; Tian, 2017; Zhang et al., 2017). Almost all of these cases are in the supervised setting
where it has also been assumed that the labels are being generated from a net of the same architecture
as is being trained. In contrast to these works we address an unsupervised learning problem, and
possibly more realistically, we do not tie the data generation model (sensing of sparse vectors by an
overcomplete incoherent dictionary) to the neural architecture being analyzed except for assuming
knowledge of a few parameters about the ground truth.

Here we specialize to the generative model of dictionary learning/sparse coding where one receives
samples of vectors y ∈ Rn that have been generated as y = A∗x∗ where A∗ ∈ Rn×h and x∗ ∈ Rh.
We typically assume that the number of non-zero entries in x∗ to be no larger than some function of
the dimension h and that A∗ satisfies certain incoherence properties. The question now is to recover
A∗ from samples of y. There have been renewed investigations into the hardness of this problem
(Tillmann, 2015) and many former results have recently been reviewed in these lectures “CBMS Con-
ference on Sparse Approximation and Signal Recovery Algorithms, May 22-26, 2017 and 16th New
Mexico Analysis Seminar, May 21”. This question has been a cornerstone of learning theory ever since
the ground-breaking paper by Olshausen and Field (Olshausen and Field, 1997) (a recent review by
the same authors can be found in Olshausen and Field, 2005). Over the years many algorithms have
been developed to solve this problem and a detailed comparison among these various approaches
can be found in Błasiok and Nelson, 2016.

Autoencoder neural networks that map Rn → Rn were defined in Section 1.1.1. These networks have
been used extensively (Baldi, 2012; Bengio et al., 2013; Rifai et al., 2011; Vincent et al., 2008; Vincent
et al., 2010) in the past for unsupervised feature learning tasks, and have been found to be successful
in generating discriminative features (Coates, Ng, and Lee, 2011). A number of different autoencoder
architectures and regularizers have been proposed which purportedly induce sparsity, at the hidden
layer (Arpit et al., 2016; Coates and Ng, 2011; Li et al., 2016; Ng, 2011). There has also been some
investigation into what autoencoders learn about the data distribution (Alain and Bengio, 2014).
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Olshausen and Field had, as early as 1996, already made the connection between sparse coding and
training neural architectures and in today’s terminology this problem is very naturally reminiscent of
the architecture of an autoencoder (Olshausen and Field, 1996). However, to the best of our knowl-
edge, there has not been sufficient progress to rigorously establish whether autoencoders can do
sparse coding.

In this work, we present our progress towards bridging the above mentioned mathematical gap. To
the best of our knowledge, there is no theoretical evidence (even under the usual generative assump-
tions of sparse coding) that the stationary points of any of the usual squared loss functions (with or
without any of the usual regularizers) have any resemblance to the original dictionary that is being
sought to be learned. The main point of this paper is to rigorously prove that for autoencoders with
ReLU activation, the standard squared loss function has a neighborhood around the dictionary A∗

where the norm of the expected gradient is very small (for large enough sparse code dimension
h). Thus, all points in a neighborhood of A∗, including A∗, are all asymptotic critical points of
this standard squared loss. We supplement our theoretical result with experimental evidence for it
in Section 4.6, which also strongly suggests that the standard squared loss function has a local mini-
mum in a neighborhood around A∗. We believe that our results provide theoretical and experimental
evidence that the sparse coding problem can be tackled by training autoencoders.

4.1.1 A motivating experiment on MNIST using TensorFlow

We used TensorFlow (Abadi et al., 2016) to train two ReLU autoencoders mapping R784 → R784

(since the MNIST images vectorize to elements in R784). These networks were trained on a subset
of the MNIST dataset of handwritten digits. One of the nets had a single hidden layer of size 10000
and the other one had two hidden layers of size 5000 and 784 (and a fixed identity matrix giving
the output from the second layer of activations). In both the cases the weights of the encoder and
decoder were maintained as transposes of each other. We trained the autoencoders on the standard
squared loss function using RMSProp “RMSprop Gradient Optimization”. The training was done on
6000 images of the digits 6 and 7 from the MNIST dataset. In the following panel we show four pairs
(two for each net) of “reconstructed” image i.e output of the trained net when its given as input the
“actual” photograph as input.
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In our opinion, the above figures add support to the belief that a single and a double layer ReLU
activated Rn → Rn network can learn an implicit high dimensional structure about the handwrit-
ten digits dataset. In particular this demonstrates that though adding more hidden layers obviously
helps enhance the reconstruction ability, the single hidden layer autoencoder do hold within them
significant power for unsupervised learning of representations. Unfortunately analyzing the RM-
SProp update rule used in the above experiment seems to be currently beyond our analytic means -
though in the next chapter we shall make some progress about understanding this algorithm. How-
ever, we take inspiration from these experiments to devise a different mathematical set-up which is
much more amenable to analysis taking us towards a better understanding of the power of autoen-
coders.

4.2 Introducing the neural architecture and the distributional as-
sumptions

For the autoencoders we continue to use the same variables as defined in equation 1.3.

Assumptions on the dictionary and the sparse code. We assume that our signal y is generated
using sparse linear combinations of atoms/vectors of an overcomplete dictionary, i.e., y = A∗x∗,
where A∗ ∈ Rn×h is a dictionary, and x∗ ∈ (R≥0)h is a non-negative sparse vector, with at most
k = hp (for some 0 < p < 1) non zero elements. The columns of the original dictionary A∗ (la-
beled as {A∗

i }h
i=1) are assumed to be normalized and we parameterize its incoherence property as,

maxi,j=1,..,h
i ̸=j

|⟨A∗
i , A∗

j ⟩| ≤
µ√
n = h−ξ for some ξ > 0.

We assume that the sparse code x∗ is sampled from a distribution with the following properties.
We fix a set of possible supports of x∗, denoted by S ⊆ 2[h], where each element of S has at most
k = hp elements. We consider any arbitrary discrete probability distribution DS on S such that the
probability q1 := PS∼S[i ∈ S] is independent of i ∈ [h], and the probability q2 := PS∈S[i, j ∈ S] is
independent of i, j ∈ [h]. A special case is when S is the set of all subsets of size k, and DS is the
uniform distribution on S. For every S ∈ S there is a distribution say DS on (R≥0)h which is sup-
ported on vectors whose support is contained in S and which is uncorrelated for pairs of coordinates
i, j ∈ S. Further, we assume that the distributions DS are such that each coordinate x∗i is compactly
supported over an interval [a(h), b(h)], where a(h) and b(h) are independent of both i and S but will
be functions of h. Moreover, m1(h) := Ex∗∼DS [x

∗
i ], and m2(h) := Ex∗∼DS [x

∗2
i ] are assumed to be in-

dependent of both i and S but allowed to depend on h. For ease of notation henceforth we will keep
the h dependence of these variables implicit and refer to them as a, b, m1 and m2. All of our results
will hold in the special case when a, b, m1, m2 are constants (no dependence on h).

4.3 Main Results

4.3.1 Recovery of the support of the sparse code by a layer of ReLUs

First we prove the following theorem which precisely quantifies the sense in which a layer of ReLU
gates is able to recover the support of the sparse code when the weight matrix of the deep net is close
to the original dictionary. We recall that the size of the support of the sparse vector x∗ is k = hp for
some 0 < p < 1. We also recall the parameters a, b as defining the support of the marginal distribution
of each coordinate of x∗ and m1 is the expected value of this marginal distribution (recall that none
of these depend on the coordinate or the actual support). These parameters will be referenced in the
results below.

Theorem 4.3.1.
We recall from equation 1.3 that our autoencoding neural net under consideration is mapping,

Rn → Rn

y ↦→ WTr where r = ReLU (Wy − ϵ)
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where the h columns of W⊤ are denoted as {Wi ∈ Rn | i = 1, . . . , h}

Let each column of W⊤ be within a δ-ball of the corresponding column of A∗, where δ = O
(︂

h−p−ν2
)︂

for some ν > 0, such that p + ν2 < ξ (where h−ξ is the coherence parameter). We further assume
that a = Ω

(︂
bh−ν2

)︂
. Let the bias of the hidden layer of the autoencoder as given above, be ϵ =

2m1k
(︂

δ + µ√
n

)︂
. Then ri ̸= 0 if i ∈ supp(x∗), and ri = 0 if i /∈ supp(x∗) with probability at least

1 − exp
(︃
− 2hpm2

1
(b−a)2

)︃
(with respect to the distribution on x∗).

As long as hpm2
1

(b−a)2 is large, i.e., an increasing function of h, we can interpret this as saying that the
probability of the adverse event is small, and we have successfully achieved support recovery at the
hidden layer in the limit of large sparse code dimension.

4.3.2 Asymptotic Criticality of the Autoencoder around A∗

In this work we analyze the following standard squared loss function for the autoencoder,

L =
1
2
||ŷ − y||2 (4.1)

If we consider a generative model in which A∗ is a square, orthogonal matrix and x∗ is a non-negative
vector (not necessarily sparse), it is easily seen that the standard squared reconstruction error loss
function for the autoencorder has a global minimum at W = A∗⊤. In our generative model, however,
A∗ is an incoherent and overcomplete dictionary.

Theorem 4.3.2. (The Main Theorem) Assume that the hypotheses of Theorem 4.3.1 hold, and p <

min{ 1
2 , ν2} (and hence ξ > 2p). Further, assume the distribution parameters satisfy exp

(︃
hpm2

1
2(b−a)2

)︃
is

superpolynomial in h (which holds, for example, when m1, a, b are O(1)). Then for i = 1, . . . , h,⃦⃦⃦⃦
E

[︃
∂L

∂Wi

]︃ ⃦⃦⃦⃦
2
≤ o

(︃
max{m2

1, m2}
h1−p

)︃
.

Roadmap. We present the proof of the support recovery result, i.e., Theorem 4.3.1, in Section 4.4.
Section 4.5 gives the proof of our main result, Theorem 4.3.2. The argument rests on Lemmas 4.5.1
and 4.5.2), whose proofs appear in Appendix 4.7 In Section 4.6, we run simulations to verify Theo-
rem 4.3.2. We also run experiments that strongly suggest that the standard squared loss function has
a local minimum in a neighborhood around A∗.

4.4 A Layer of ReLU Gates can Recover the Support of the Sparse
Code (Proof of Theorem 4.3.1)

Most sparse coding algorithms are based on an alternating minimization approach, where one itera-
tively finds a sparse code based on the current estimate of the dictionary, and then uses the estimated
sparse code to update the dictionary. The analogue of the sparse coding step in an autoencoder, is the
passing through the hidden layer of activations of a certain affine transformation (W which behaves
as the current estimate of the dictionary) of the input vectors. We show that under certain stochastic
assumptions, the hidden layer of ReLU gates in an autoencoder recovers with high probability the
support of the sparse vector which corresponds to the present input.

Proof of Theorem 4.3.1. From the model assumptions, we know that the dictionary A∗ is incoherent,
and has unit norm columns. So, |⟨A∗

i , A∗
j ⟩| ≤

µ√
n for all i ̸= j, and ||A∗

i || = 1 for all i. This means that
for i ̸= j,
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|⟨Wi, A∗
j ⟩| = |⟨Wi − A∗

i , A∗
j ⟩|+ |⟨A∗

i , A∗
j ⟩|

≤ ||Wi − A∗
i ||2||A∗

j ||2 +
µ√
n
≤ (δ +

µ√
n
) (4.2)

Otherwise for i = j,

⟨Wi, A∗
i ⟩ = ⟨Wi − A∗

i , A∗
i ⟩+ ⟨A∗

i , A∗
i ⟩ = ⟨Wi − A∗

i , A∗
i ⟩+ 1,

and thus,
1 − δ ≤ ⟨Wi, A∗

i ⟩ ≤ 1 + δ, (4.3)

where we use the fact that |⟨Wi − A∗
i , A∗

i ⟩| ≤ δ.

Let y = A∗x∗ and let S be the support of x∗. Then we define the input to the ReLU activation
Q − ϵ = Wy − ϵ as

Qi = ∑
j∈S

⟨Wi, A∗
j ⟩x∗j = ⟨Wi, A∗

i ⟩x∗i 1i∈S + ∑
j∈S\i

⟨Wi, A∗
j ⟩x∗j = ⟨Wi, A∗

i ⟩x∗i 1i∈S + Zi.

First we try to get bounds on Qi when i ∈ supp(x∗). From our assumptions on the distribution of x∗i
we have, 0 ≤ a ≤ x∗i ≤ b and E[x∗i ] = m1 for all i in the support of x∗. For i ∈ supp(x∗),

Qi = ⟨Wi, A∗
i ⟩x∗i + Zi =⇒ Qi ≥ (1 − δ)a + Zi

where we use (4.3). Using (4.2), Zi has the following bounds:

−bk
(︃

δ +
µ√
n

)︃
≤ Zi ≤ bk

(︃
δ +

µ√
n

)︃
Plugging in the lower bound for Zi and the proposed value for the bias, we get

Qi − ϵ ≥ (1 − δ)a − bk
(︃

δ +
µ√
n

)︃
− 2m1k

(︃
δ +

µ√
n

)︃

For Qi − ϵ ≥ 0, we need:

a ≥
(b + 2m1)

(︂
δ + µ√

n

)︂
k

1 − δ

Now plugging in the values for the various quantities, µ√
n = h−ξ and k = hp and δ = O

(︂
h−p−ν2

)︂
, if

we have a = Ω
(︂

bh−ν2
)︂

, then Qi − ϵ ≥ 0.

Now, for i /∈ supp(x∗) we would like to analyze the following probability:

Pr[Qi − ϵ ≥ 0|i /∈ supp(x∗)]

We first simplify the quantity Pr[Qi − ϵ ≥ 0|i /∈ supp(x∗)] as follows

Pr[Qi ≥ ϵ|i /∈ supp(x∗)] = Pr[Zi ≥ ϵ] = Pr

⎡⎣ ∑
j∈S\i

⟨Wi, A∗
j ⟩x∗j ≥ ϵ

⎤⎦
We recall that we had assumed that for every possible support S (of x∗) the distribution DS on (R≥0)h,
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which is supported on vectors whose support is contained in S, is s.t the random variables corre-
sponding to coordinates i, j ∈ S are uncorrelated. Now using the Chernoff’s bound, we can obtain

Pr[Zi ≥ ϵ] ≤ inf
t≥0

e−tϵE

⎡⎣ ∏
j∈S\i

[︂
et⟨Wi ,A∗

j ⟩x∗j
]︂⎤⎦ = inf

t≥0
e−tϵ ∏

j∈S\i
E
[︂
et⟨Wi ,A∗

j ⟩x∗j
]︂

≤ inf
t≥0

e−tϵEk
[︃

et
(︂

δ+
µ√
n

)︂
x∗j
]︃

≤ inf
t≥0

e−tϵ

⎛⎜⎝et
(︂

δ+
µ√
n

)︂
m1 e

t2
(︃

δ+
µ√
n

)︃2
(b−a)2

8

⎞⎟⎠
k

where the second inequality follows from (4.2) and the fact that t and x∗i are both nonnegative, and
the third inequality follows from Hoeffding’s Lemma. Next, we also have

Pr[Zi ≥ ϵ] ≤ inf
t≥0

e−t
(︂

ϵ−k
(︂

δ+
µ√
n

)︂
m1

)︂
+t2 k

8

(︂
δ+

µ√
n

)︂2
(b−a)2

= e
−

(ϵ−k(δ+ µ√
n
)m1)

2

k
2 (δ+

µ√
n
)2(b−a)2

.

Finally, since k = hp and ϵ = 2m1k
(︂

δ + µ√
n

)︂
, we have

exp

(︄
−

2(ϵ − km1(δ +
µ√
n ))

2

hp(δ + µ√
n )

2(b − a)2

)︄
= exp

(︄
− 2hpm2

1
(b − a)2

)︄

4.5 Criticality of a neighborhood of A∗ (Proof of Theorem 4.3.2)

It turns out that the expectation of the full gradient of the loss function (4.1) is difficult to analyze
directly. Hence corresponding to the true gradient with respect to the ith−column of W⊤ we create a
proxy, denoted by ˆ︃∇iL, by replacing in the expression for the true expectation ∇iL = E

[︂
∂L

∂Wi

]︂
every

occurrence of the random variable 1W⊤
i y−ϵi≥0 = Th(W⊤

i y − ϵi) = Th(W⊤
i A∗x∗ − ϵi) by the indicator

random variable 1i∈supp(x∗). This proxy is shown to be a good approximant of the expected gradient
in the following lemma.

Lemma 4.5.1. Assume that the hypotheses of Theorem 4.3.1 hold and additionally let b be bounded
by a polynomial in h. Then we have for each i (indexing the columns of W⊤),⃓⃓⃓⃓

⃓
⃓⃓⃓⃓
⃓ˆ︃∇iL − E

[︃
∂L

∂Wi

]︃ ⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓
2

≤ poly(h)exp

(︄
− hpm2

1
2(b − a)2

)︄

Proof. This lemma has been proven in Section 4.A of the Appendix.

Lemma 4.5.2.
Assume that the hypotheses of Theorem 4.3.1 hold, and p < min{ 1

2 , ν2} (and hence ξ > 2p). Then for
each i indexing the columns of W⊤, there exist real valued functions αi and βi, and a vector ei such
that ˆ︃∇iL = αiWi − βi A∗

i + ei, and

αi = Θ(m2hp−1) + o(m2
1hp−1)

βi = Θ(m2hp−1) + o(m2
1hp−1)

αi − βi = o(max{m2
1, m2}hp−1)

||ei||2 = o(max{m2
1, m2}hp−1)
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Proof. In subsection 4.5.1 we first get explicit forms of the above defined quantities αi, βi and ei. Then
the proof is completed by estimating them which is done in Appendix 4.B

With the above asymptotic results, we are in a position to assemble the proof of Theorem 4.3.2.

Proof of Theorem 4.3.2. Consider any i indexing the columns of W⊤. Recall the definition of the proxy
gradient ˆ︃∇iL at the beginning of this section. Let us define γi = ˆ︃∇iL − E

[︂
∂L

∂Wi

]︂
. Using αi, βi and ei

as defined in Lemma 4.5.2, we can write the expectation of the true gradient as, E
[︂

∂L
∂Wi

]︂
= αiWi −

βi A∗
i + ei − γi. Further, by Lemma 4.5.1,

∥γi∥ ≤ poly(h)exp

(︄
− hpm2

1
2(b − a)2

)︄
.

Since exp
(︃

hpm2
1

2(b−a)2

)︃
is superpolynomial in h, we obtain

⃦⃦⃦⃦
E

[︃
∂L

∂Wi

]︃ ⃦⃦⃦⃦
2
= ||αiWi − βi A∗

i + ei − γi||2

= ||αi(Wi − A∗
i ) + (αi − βi)A∗

i + ei − γi||2
≤ |αi|∥Wi − A∗

i ∥2 + |αi − βi|+ ||ei − γi||2

≤ Θ(m2hp−1)

h2p+θ2 + o(max{m2
1, m2}hp−1)

+ o(max{m2
1, m2}hp−1)

= o(max{m2
1, m2}hp−1)

4.5.1 Simplifying the proxy gradient of the autoencoder under the sparse-coding
generative model - to get explicit forms of the coefficients α, β and e as
required towards proving Lemma 4.5.2

To recap we imagine being given as input signals y ∈ Rn (imagined as column vectors), which are
generated from an overcomplete dictionary A∗ ∈ Rn×h of fixed incoherence. Let x∗ ∈ Rh (imagined
as column vectors) be the sparse code that generates y. The model of the autoencoder that we now
have is ŷ = W⊤ReLU(Wy − ϵ). W is a h × n matrix and the ith column of W⊤ is to be denoted as the
column vector Wi.

Using the above notation the squared loss of the autoencoder is 1
2 ||ŷ − y||2. But we introduce a

dummy constant D = 1 to be multiplied to y because this helps read the complicated equations that
would now follow. This marker helps easily spot those terms which depend on the sensing of x∗

(those with a factor of D) as opposed to the terms which are “purely” dependent on the neural net
(those without the factor of D). Thus we think of the squared loss L of our autoencoder as,

L =
1
2
||ŷ − Dy||2 =

1
2
(W⊤ReLU(Wy − ϵ)− Dy)⊤(W⊤ReLU(Wy − ϵ)− Dy) =

1
2

f T f

where we have defined f ∈ Rn as,

f = W⊤ReLU(Wy − ϵ)− Dy

Then we have,

JWi ( f )ab =
∂ fa

∂Wib
= ReLU(W⊤

i y − ϵ)δab + Th(WT
i y − ϵ)Wiayb
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In the form of a n × n derivative matrix this means,

JWi ( f ) =
[︃

∂ fa

∂Wib

]︃
= ReLU(W⊤

i y − ϵ)I + Th(W⊤
i y − ϵ)Wiy⊤

This helps us write,

∂L
∂Wi

= JWi ( f ))⊤ f

= (ReLU(W⊤
i y − ϵ)I + Th(W⊤

i y − ϵ)Wiy⊤)⊤[W⊤ReLU(Wy − ϵ)− Dy]

= Th(W⊤
i y − ϵi)

[︂
(W⊤

i y − ϵi)I + yW⊤
i

]︂ (︄ h

∑
j=1

ReLU(W⊤
j y − ϵj)Wj − Dy

)︄

Now going over to the proxy gradient ˆ︃∇iL corresponding to this term and we define the vector Gi as,

ˆ︃∇iL = ES∈S

[︄
1i∈S × Ex∗S

[︄[︂
(W⊤

i y − ϵi)I + yW⊤
i

]︂ (︄
∑
j∈S

(W⊤
j y − ϵj)Wj − Dy

)︄]︄]︄
= ES∈S [1i∈S × Gi]

Thus we have,

Gi = Ex∗S

[︄[︂
(W⊤

i A∗x∗ − ϵi)I + (A∗x∗)W⊤
i

]︂ (︄
∑
j∈S

(W⊤
j A∗x∗ − ϵj)Wj − DA∗x∗

)︄]︄

= Ex∗S

[︄
(W⊤

i A∗x∗ − ϵi)

(︄
∑
j∈S

(W⊤
j A∗x∗ − ϵj)Wj − DA∗x∗

)︄]︄
⏞ ⏟⏟ ⏞

Term 1

+ Ex∗S

[︄
(A∗x∗)W⊤

i

(︄
∑
j∈S

(W⊤
j A∗x∗ − ϵj)Wj − DA∗x∗

)︄]︄
⏞ ⏟⏟ ⏞

Term 2

which can be decomposed into the following convenient parts,

Gi = Ex∗S

[︄
∑
j∈S

ϵiϵjWj − ∑
j,k∈S

ϵi(W⊤
j A∗

k )Wjx∗k − ∑
j,k∈S

ϵj(W⊤
i A∗

k )Wjx∗k + ∑
j,k,l∈S

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wjx∗l x∗k

]︄
⏞ ⏟⏟ ⏞

From Term 1

+ Ex∗S

[︄
−D ∑

j,k∈S
(W⊤

i A∗
k )A∗

j x∗k x∗j + D ∑
j∈S

ϵi A∗
j x∗j

]︄
⏞ ⏟⏟ ⏞

From Term 1

+Ex∗S

[︄
−D ∑

j,k∈S
(A∗⊤

k Wi)A∗
j x∗k x∗j

]︄
⏞ ⏟⏟ ⏞

From Term 2

+ Ex∗S

[︄
− ∑

j,k∈S
ϵj A∗

k (W
⊤
i Wj)x∗k

]︄
⏞ ⏟⏟ ⏞

From Term 2

+Ex∗S

[︄
∑

j,k,l∈S
(W⊤

i Wj)(W⊤
j A∗

l )A∗
k x∗k x∗l

]︄
⏞ ⏟⏟ ⏞

From Term 2
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Now we invoke the distributional assumption about i.i.d sampling of the coordinates for a fixed
support and the definition of m1 and m2 to write, Ex∗S

[x∗i x∗j ] = E2
x∗S
[x∗i ] = m2

1 for all i ̸= j and for i = j,
m2 = Ex∗S

[x∗i x∗j ]. Thus we get,

Gi = ∑
j∈S

ϵiϵjWj − m1 ∑
j,k∈S

(W⊤
j A∗

k )Wjϵi − m1 ∑
j,k∈S

ϵj(W⊤
i A∗

k )Wj⏞ ⏟⏟ ⏞
G1

i From Term 1

+ m2 ∑
j,k∈S

(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj + m2
1 ∑

j,k,l∈S
k ̸=l

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

⏞ ⏟⏟ ⏞
G2

i From Term 1

+

⎡⎢⎢⎣−Dm2
1 ∑

j,k∈S
j ̸=k

(W⊤
i A∗

k )A∗
j − Dm2 ∑

j∈S
(W⊤

i A∗
j )A∗

j + m1D ∑
j∈S

ϵi A∗
j

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

G3
i From Term 1

−

⎡⎢⎢⎣Dm2
1 ∑

j,k∈S
j ̸=k

(A∗⊤
k Wi)A∗

j + Dm2 ∑
j∈S

(A∗⊤
j Wi)A∗

j

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

G4
i From Term 2

− m1

[︄
∑

j,k∈S
ϵj(W⊤

i Wj)A∗
k

]︄
+

⎡⎢⎢⎣m2 ∑
j,k∈S

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k + m2
1 ∑

j,k,l∈S
k ̸=l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

G5
i From Term 2

Each term in the above sum is a vector. Now we separate out from the sums the terms which are in
the directions of Wi or A∗

i and the rest. We remember that this is being under the condition that i ∈ S.
To make this easy to read we do this separation for each line of the above equation separately in a
different equation block. Also inside every block we do the separation for each summation term in a
separate line.
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G1
i = ∑

j∈S
ϵiϵjWj − m1 ∑

j,k∈S
(W⊤

j A∗
k )Wjϵi − m1 ∑

j,k∈S
ϵj(W⊤

i A∗
k )Wj

=

⎡⎢⎢⎣ϵ2
i Wi + ∑

j∈S
j ̸=i

ϵiϵjWj

⎤⎥⎥⎦

− m1

⎡⎢⎢⎣∑
k∈S

ϵi(W⊤
i A∗

k )Wi + ∑
j,k∈S
j ̸=i

(W⊤
j A∗

k )Wjϵi

⎤⎥⎥⎦

− m1

⎡⎢⎢⎣∑
k∈S

ϵi(W⊤
i A∗

k )Wi + ∑
j,k∈S
j ̸=i

ϵj(W⊤
i A∗

k )Wj

⎤⎥⎥⎦

G2
i = m2 ∑

j,k∈S
(W⊤

i A∗
k )(W

⊤
j A∗

k )Wj + m2
1 ∑

j,k,l∈S
k ̸=l

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

= m2

⎡⎢⎢⎣∑
k∈S

(W⊤
i A∗

k )(W
⊤
i A∗

k )Wi + ∑
j,k∈S
j ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj

⎤⎥⎥⎦

+ m2
1

⎡⎢⎢⎢⎢⎢⎣ ∑
k,l∈S
k ̸=l

(W⊤
i A∗

k )(W
⊤
i A∗

l )Wi + ∑
j,k,l∈S

j ̸=i
k ̸=l

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

⎤⎥⎥⎥⎥⎥⎦
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G3
i = −D

⎡⎢⎢⎣m2
1 ∑

j,k∈S
j ̸=k

(W⊤
i A∗

k )A∗
j + m2 ∑

j∈S
(W⊤

i A∗
j )A∗

j − m1 ∑
j∈S

ϵi A∗
j

⎤⎥⎥⎦

= −D

⎡⎢⎢⎢⎢⎢⎣m2
1 ∑

k∈S
k ̸=i

(W⊤
i A∗

k )A∗
i + m2

1 ∑
j,k∈S
j ̸=i
j ̸=k

(W⊤
i A∗

k )A∗
j

⎤⎥⎥⎥⎥⎥⎦

− D

⎡⎢⎢⎣m2(W⊤
i A∗

i )A∗
i + m2 ∑

j∈S
j ̸=i

(W⊤
i A∗

j )A∗
j

⎤⎥⎥⎦

− D

⎡⎢⎢⎣−m1ϵi A∗
i − m1 ∑

j∈S
j ̸=i

ϵi A∗
j

⎤⎥⎥⎦

G4
i = −

⎡⎢⎢⎣Dm2
1 ∑

j,k∈S
j ̸=k

(A∗⊤
k Wi)A∗

j + Dm2 ∑
j∈S

(A∗⊤
j Wi)A∗

j

⎤⎥⎥⎦

= −D

⎡⎢⎢⎢⎢⎢⎣m2
1 ∑

k∈S
k ̸=i

(A∗⊤
k Wi)A∗

i + m2
1 ∑

j,k∈S
j ̸=k
j ̸=i

(A∗⊤
k Wi)A∗

j

⎤⎥⎥⎥⎥⎥⎦

− D

⎡⎢⎢⎣m2(A∗⊤
i Wi)A∗

i + m2 ∑
j∈S
j ̸=i

(A∗⊤
j Wi)A∗

j

⎤⎥⎥⎦

G5
i = −m1

[︄
∑

j,k∈S
ϵj(W⊤

i Wj)A∗
k

]︄
+

⎡⎢⎢⎣m2 ∑
j,k∈S

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k + m2
1 ∑

j,k,l∈S
k ̸=l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

⎤⎥⎥⎦
= −m1 ∑

j∈S
ϵj(W⊤

i Wj)A∗
i − m1 ∑

j,k∈S
k ̸=i

ϵj(W⊤
i Wj)A∗

k

+ m2 ∑
j∈S

(W⊤
i Wj)(W⊤

j A∗
i )A∗

i + m2 ∑
j,k∈S
k ̸=i

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k

+ m2
1 ∑

j,l∈S
l ̸=i

(W⊤
i Wj)(W⊤

j A∗
l )A∗

i + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

Thus combining the G1
i , . . . , G5

i above we have, ˆ︃∇iL = αiWi − βi A∗
i + ei where,

63



Chapter 4. Sparse Coding and Autoencoders

αi = ES∈S

[︄
1i∈S ×

{︄
m2 ∑

k∈S
(W⊤

i A∗
k )(W

⊤
i A∗

k ) + m2
1 ∑

k,l∈S
k ̸=l

(W⊤
i A∗

k )(W
⊤
i A∗

l )− 2m1 ∑
k∈S

ϵi(W⊤
i A∗

k ) + ϵ2
i

}︄]︄

βi = ES∈S

[︄
1i∈S ×

{︄
2Dm2

1 ∑
k∈S
k ̸=i

(W⊤
i A∗

k ) + 2Dm2(W⊤
i A∗

i )− Dm1ϵi + m1 ∑
j∈S

ϵj(W⊤
i Wj)

− m2 ∑
j∈S

(W⊤
i Wj)(W⊤

j A∗
i )− m2

1 ∑
j,l∈S
l ̸=i

(W⊤
i Wj)(W⊤

j A∗
l )

}︄]︄

ei = ES∈S

[︄
1i∈S ×

{︄
∑
j∈S
j ̸=i

ϵiϵjWj − m1 ∑
j,k∈S
j ̸=i

ϵi(W⊤
j A∗

k )Wj − m1 ∑
j,k∈S
j ̸=i

ϵj(W⊤
i A∗

k )Wj

+ m2 ∑
j,k∈S
j ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj + m2
1 ∑

j,k,l∈S
j ̸=i
k ̸=l

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

− 2Dm2
1 ∑

j,k∈S
j ̸=i
j ̸=k

(W⊤
i A∗

k )A∗
j − 2Dm2 ∑

j∈S
j ̸=i

(W⊤
i A∗

j )A∗
j + Dm1 ∑

j∈S
j ̸=i

ϵi A∗
j

− m1 ∑
j,k∈S
k ̸=i

ϵj(W⊤
i Wj)A∗

k + m2 ∑
j,k∈S
k ̸=i

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

}︄]︄

Thus we have laid the groundwork of finding a convenient decomposition of the proxy-gradient in
terms of the quantities αi, βi and ei. Now we can go over to Appendix 4.B where their magnitudes
are estimated towards completing the proof of Lemma 4.5.2.

4.6 Simulations

We conduct some experiments on synthetic data in order to check whether the gradient norm is
indeed small within the columnwise δ-ball of A∗. We also make some observations about the land-
scape of the squared loss function, which has implications for being able to recover the ground-truth
dictionary A∗.

Data Generation Model We generate random gaussian dictionaries (A∗) of size n × h where n =
50, and h = 256, 512, 1024, 2048 and 4096. For each h, we generate a dataset containing N = 5000
sparse vectors with hp non-zero entries, for various p ∈ [0.01, 0.5]. In our experiments, the coherence
parameter ξ was approximately 0.1. The support of each sparse vector x∗ is drawn uniformly from
all sets of indices of size hp, and the non-zero entries in the sparse vectors are drawn from a uniform
distribution between a = 1 and b = 10. Once we have generated the sparse vectors, we collect them
in a matrix X∗ ∈ Rh×N and then compute the signals Y = A∗X∗. We set up the autoencoder as
defined through equation 1.3. We analyze the squared loss function in (4.1) and its gradient with
respect to a column of W through their empirical averages over the signals in Y.

Results Once we have generated the data, we compute the empirical average of the gradient of the
loss function in (4.1) at 200 random points which are columnwise δ

2 = 1
2h2p away from A∗. We average

the gradient over the 200 points which are all at the same distance from A∗, and compare the average
column norm of the gradient to hp−1. Our experimental results shown in Table 4.6.1 demonstrate that
the average column norm of the gradient is of the order of hp−1 (and thus falling with h for any fixed
p) as expected from Theorem 4.3.2.

We also plot the squared loss of the autoencoder along a randomly chosen direction to understand
the geometry of the landscape of the loss function around A∗. We draw a matrix ∆W from a standard
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HH
HHHh

p 0.01 0.02 0.05 0.1 0.2

256 (0.0137, 0.0041) (0.0138, 0.0044) (0.0126, 0.0052) (0.0095, 0.0068) (0.0284, 0.0118)
512 (0.0058, 0.0021) (0.0058, 0.0022) (0.0054, 0.0027) (0.0071, 0.0036) (0.0104, 0.0068)
1024 (0.0025, 0.0010) (0.0024, 0.0011) (0.0026, 0.0014) (0.0079, 0.0020) (0.0078, 0.0039)
2048 (0.0011, 0.0005) (0.0012, 0.0006) (0.0025, 0.0007) (0.0031, 0.0010) (0.0032, 0.0022)
4096 (0.0006, 0.0003) (0.0012, 0.0003) (0.0013, 0.0004) (0.0026, 0.0006) (0.0020, 0.0013)

HH
HHHh

p 0.3 0.5

256 (0.0464, 0.0206) (0.0343, 0.0625)
512 (0.0214, 0.0127) (0.0028, 0.0442)
1024 (0.0099, 0.0078) (0.00, 0.0313)
2048 (0.0036, 0.0048) (0.00, 0.0221)
4096 (0.0008, 0.0030) (0.00, 0.0156)

TABLE 4.6.1: Average gradient norm for points that are columnwise δ
2 away from A∗.

For each h and p we report
(︂
||E
[︂

∂L
∂Wi

]︂
||, hp−1

)︂
. We note that the gradient norm and

hp−1 are of the same order, and for any fixed p the gradient norm is decreasing with h
as expected from Theorem 4.3.2

normal distribution, and normalize its columns. We then plot f (t) = L((A∗ + t∆W)⊤), as well as the
gradient norm averaged over all the columns. For purposes of illustration, we show these plots for
p = 0.01, 0.1, 0.3. The plots for h = 256 are in Figure 4.6.1, and those for h = 4096 in Figure 4.6.2.
From the plots for p = 0.01 and 0.1, we can observe that the loss function value, and the gradient
norm keep decreasing as we get close to A∗. Figure 4.6.1 and 4.6.2 are representative of the shapes
obtained for every direction, ∆W that we checked. This suggests that A∗ might conveniently lie at the
bottom of a well in the landscape of the loss function. For the value of p = 0.3, (which is much larger
than the coherence parameter ξ), Theorem 4.3.1 is no longer valid. We see that the value of the loss
function decreases a little as we move away from A∗, and then increases. We suspect that A∗ is here
in a region where ReLU(A∗⊤y − ϵ) = 0, which means the function is flat in a small neighborhood of
A∗.

FIGURE 4.6.1: Loss function plot for h = 256, n = 50

We also tried to minimize the squared loss of the autoencoder using gradient descent. In these exper-
iments, we initialized W⊤ far away from A∗ (precisely at a columnwise distance of h

5 × δ), and did
gradient descent until the gradient norm dropped below a factor of 2× 10−5 of the initial norm of the
gradient. We then computed the average columnwise distance between W⊤

final and A∗, and report the
% decrease in the average columnwise distance from the initial point. These results are reported in
Table 4.6.2 below. These experiments suggest that there is a neighborhood of A∗ (the radius of which
is increasing with h), such that gradient descent initialized at the edge of that neighborhood, greatly
reduces the average columnwise distance between W⊤ and A∗.
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FIGURE 4.6.2: Loss function plot for h = 4096, n = 50

h p = 0.05 p = 0.1
256 97.7% 96.9%
512 98.6% 98.2%
1024 99% 98.8%
2048 99.2% 99%
4096 99.4% 99.2%

TABLE 4.6.2: Fraction of initial columnwise distance covered by the gradient descent
procedure

4.7 Conclusion

In this chapter we have undertaken a rigorous analysis of the loss function of the squared loss of an
autoencoder when the data is assumed to be generated by sensing of sparse high dimensional vectors
by an overcomplete dictionary. We have shown that the expected gradient of this loss function is
very close to zero in a neighborhood of the generating overcomplete dictionary.

Our simulations complement this theoretical result by providing further empirical support. Firstly,
they show that the gradient norm in this δ−ball of A∗ indeed falls with h and is of the same order
as 1

h1−p as expected from our proof. Secondly, the experiments also strongly suggest ranges of values
of h and p where A∗ is a local minima of this loss function and that it has a neighborhood where the
reconstruction error is low.

This suggests sparse coding problems can be solved by training autoencoders using gradient de-
scent based algorithms. Further, recent investigations have led to the conjecture/belief that many
important unsupervised learning tasks, e.g. recognizing handwritten digits, are sparse coding prob-
lems in disguise (Makhzani and Frey, 2013; Makhzani and Frey, 2015). Thus, our results could shed
some light on the observed phenomenon that gradient descent based algorithms train autoencoders
to low reconstruction error for natural data sets, like MNIST.

It remains to rigorously show whether a gradient descent algorithm can be initialized randomly
(may be far away from A∗) and still be shown to converge to this neighborhood of critical points
around the dictionary. Towards that it might be helpful to understand the structure of the Hessian
outside this neighborhood. Since our analysis applies to the expected gradient, it remains to analyze
the sample complexities where these nice results will become prominent.

The possibility also remains open that this standard loss or some other loss functions exist for the
autoencoder with the provable property of having a global minima/minimum at the ground truth
dictionary. We have mentioned one example of such in a special case (when A∗ is square orthogonal
and x∗ is nonnegative) and even in this special case it remains open to find a provable optimization
algorithm.

On the simulation front we have a couple of open challenges yet to be tackled. Firstly, it is left to
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find efficient implementations of the iterative update rule based on the exact gradient of the pro-
posed loss function which has been given in (4.1). This would open up avenues for testing the power
of this loss function on real data rather than the synthetic data used here. Secondly, a simulation of
the main Theorem 4.3.2 that can probe deeper into its claim would need to be able to sample A∗ for
different h at a fixed value of the incoherence parameter ξ. This sampling question of A∗ with these
constraints is an unresolved one that is left for future work.

Autoencoders with more than one hidden layer have been used for unsupervised feature learning
(Le, 2013) and recently there has been an analysis of the sparse coding performance of convolutional
neural networks with one layer (Gilbert et al., 2017) and two layers of nonlinearities (Vardan, Ro-
mano, and Elad, 2016). The connections between neural networks and sparse coding has also been
recently explored in Bora et al., 2017. It remains an exciting open avenue of research to try to do a
similar study as in this work to determine if and how deeper architectures under the same generative
model might provide better means of doing sparse coding.
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Appendix To Chapter 4

4.A The proxy gradient is a good approximation of the true expec-
tation of the gradient (Proof of Lemma 5.1)

Proof. To make it easy to present this argument let us abstractly think of the function f (defined
for any i ∈ {1, 2, 3, .., h}) as f (y, W, X) = ∂L

∂Wi
where we have defined the random variable X =

Th[WT
i y − ϵi]. It is to be noted that because of the ReLU term and its derivative this function f has

a dependency on y = A∗x∗ even outside its dependency through X. Let us define another random
variable Y = 1i∈Support(x∗). Then we have,⃦⃦

Ex∗ [ f (y, W, X)]− Ex∗ [ f (y, W, Y)]
⃦⃦
ℓ2

≤Ex∗ [| f (y, W, X)− f (y, W, Y)|ℓ2 ]

≤Ex∗ [| f (y, W, X)(1X=Y + 1X ̸=Y)− f (y, W, Y)(1X=Y + 1X ̸=Y)|ℓ2 ]

≤Ex∗ [|( f (y, W, X)− f (y, W, Y))|ℓ2 1X ̸=Y]

≤
√︂

Ex∗ [
⃓⃓
f (y, W, X)− f (y, W, Y)

⃓⃓2
2]
√︂

Ex∗ [1X ̸=Y]

In the last step above we have used the Cauchy-Schwarz inequality for random variables. We recog-
nize that Ex∗ [ f (y, W, Y)] is precisely what we defined as the proxy gradient ˆ︃∇iL. Further for such W
as in this lemma the support recovery theorem (Theorem 3.1) holds and that is precisely the statement
that the term, Ex∗ [1X ̸=Y] is small. So we can rewrite the above inequality as,⃦⃦⃦⃦

Ex∗ [
∂L

∂Wi
]− ˆ︃∇iL

⃦⃦⃦⃦
2
≤
√︂

Ex∗ [
⃓⃓
f (y, W, X)− f (y, W, Y)

⃓⃓2
2] exp

(︄
− hpm2

1
2(b − a)2

)︄

We remember that f is a polynomial in h because its h dependency is through Frobenius norms of
submatrices of W and ℓ2 norms of projections of Wy. But the ℓ∞ norm of the training vectors y (that
is b) have been assumed to be bounded by poly(h). Also we have the assumption that the columns of
W⊤ are within a 1

hp+ν2 −ball of the corresponding columns of A∗ which in turn is a n × h dimensional
matrix of bounded norm because all its columns are normalized. So summarizing we have,

⃦⃦⃦⃦
Ex∗ [

∂L
∂Wi

]− ˆ︃∇iL
⃦⃦⃦⃦

2
≤ poly(h) exp

(︄
− hpm2

1
2(b − a)2

)︄

The above inequality immediately implies the claimed lemma.
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4.B The asymptotics of the coefficients of the gradient of the squared
loss (Proof of Lemma 5.2)

We will pick up from where subsection 4.5.1 left and will now estimate bounds on each of the terms
αi, βi, ||ei||, which were defined at the end of that segment. We will separate them as αi = αi˜ + αiˆ
(similarly for the other terms). Where the tilde terms are those that come as a coefficient of m2, and
the hat terms are the ones that come as coefficient of m1 or ϵ or both. (Note : Given the previous
definitions of q1 and q2 it is obvious from context as to how the quantities qi, qij, qijk and qS mean and
we shall use this notation in this Appendix.)

4.B.1 Estimating the m2 dependent parts of the derivative

Since ||A∗
i || = 1 and Wi is being assumed to be within a 0 < δ < 1 ball of A∗

i we can use the following
inequalities:

||Wi|| = ||Wi − A∗
i + A∗

i || ≤ ||Wi − A∗
i ||+ ||A∗

i || = δ + 1
||Wi|| ≥ 1 − δ

⟨Wi, A∗
i ⟩ = ⟨Wi − A∗

i , A∗
i ⟩+ ⟨A∗

i , A∗
i ⟩ ≤ ||Wi − A∗

i ||||A∗
i ||+ 1 ≤ δ + 1

⟨Wi, A∗
i ⟩ ≥ 1 − δ

|⟨Wj, A∗
i ⟩| = |⟨Wj − A∗

j , A∗
i ⟩+ ⟨A∗

j , A∗
i ⟩| ≤

µ√
n
+ ||Wj − A∗

j ||||A∗
i || =

µ√
n
+ δ

|⟨Wi, Wj⟩| = |⟨Wi − A∗
i , Wj⟩+ ⟨A∗

i , Wj⟩| ≤ δ(1 + δ) + (δ +
µ√
n
) = δ2 + 2δ +

µ√
n

⟨Wi, Wi⟩ = ||Wi||2 ≥ (1 − δ)2

⟨Wi, Wi⟩ = ||Wi||2 ≤ (1 + δ)2

Bounding βi˜

βi˜ = ES∈S

[︄
1i∈S

{︄
2Dm2(W⊤

i A∗
i )− m2 ∑

j∈S
(W⊤

i Wj)(W⊤
j A∗

i )

}︄]︄

= ES∈S

⎡⎢⎢⎣1i∈S

⎧⎪⎪⎨⎪⎪⎩2Dm2⟨Wi, A∗
i ⟩ − m2||Wi||2⟨Wi, A∗

i ⟩ − m2 ∑
j∈S
j ̸=i

⟨Wi, Wj⟩⟨Wj, A∗
i ⟩

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦
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Evaluating the outer expectation we get,

βi˜ = ∑
{S∈S:i∈S}

qS2Dm2⟨Wi, A∗
i ⟩ − ∑

{S∈S:i∈S}
qSm2||Wi||2⟨Wi, A∗

i ⟩ − m2

h

∑
j=1
j ̸=i

⟨Wi, Wj⟩⟨Wj, A∗
i ⟩ ∑

{S∈S:i,j∈S,i ̸=j}
qS

= 2Dqim2⟨Wi, A∗
i ⟩ − qim2||Wi||2⟨Wi, A∗

i ⟩ − m2

h

∑
j=1
j ̸=i

qij⟨Wi, Wj⟩⟨Wj, A∗
i ⟩

Upper bounding the above we get,

βi˜ ≤ 2Dm2hp−1(1 + δ)− m2hp−1(1 − δ)3 + m2h2p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
= 2Dm2hp−1(1 + h−p−ν2

)− m2hp−1(1 − 3h−p−ν2
+ 3h−2p−2ν2 − h−3p−3ν2

)

+ m2h2p−1(h−3p−3ν2
+ 2h−2p−2ν2

+ h−2p−2ν2−ξ + 3h−p−ν2−ξ + h−2ξ) (4.4)
Similarly for the lower bound on βi we get,

βi˜ ≥ 2Dm2hp−1(1 − δ)− m2hp−1(1 + δ)3 − m2h2p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
= 2Dm2hp−1(1 − h−p−ν2

)− m2hp−1(1 + 3h−p−ν2
+ 3h−2p−2ν2

+ h−3p−3ν2
)

− m2h2p−1(h−3p−3ν2
+ 2h−2p−2ν2

+ h−2p−2ν2−ξ + 3h−p−ν2−ξ + h−2ξ) (4.5)

Thus for 0 < p < 2ξ and D = 1, we have β = Θ
(︁
m2hp−1)︁

Bounding αi˜

αi˜ = ES∈S

[︄
1i∈S

{︄
m2 ∑

k∈S
(W⊤

i A∗
k )

2

}︄]︄

= ES∈S

⎡⎢⎣1i∈S

⎧⎪⎨⎪⎩m2⟨Wi, A∗
i ⟩2 + m2 ∑

k∈S
k ̸=i

⟨Wi, A∗
k ⟩2

⎫⎪⎬⎪⎭
⎤⎥⎦

= ∑
{S∈S:i∈S}

m2⟨Wi, A∗
i ⟩2qS +

h

∑
k=1
k ̸=i

∑
{S∈S:i,k∈S}

⟨Wi, A∗
k ⟩2qS

= m2⟨Wi, A∗
i ⟩2 ∑

{S∈S:i∈S}
qS + m2

h

∑
k=1
k ̸=i

⟨Wi, A∗
k ⟩2

⎛⎝ ∑
{S∈S:i,k∈S,i ̸=k}

qS

⎞⎠
= qim2⟨Wi, A∗

i ⟩2 + m2

h

∑
k=1
k ̸=i

qik⟨Wi, A∗
k ⟩2

= hp−1m2⟨Wi, A∗
i ⟩2 + m2h2p−1 max ⟨Wi, A∗

k ⟩2

The above implies the following bounds,

hp−1m2(1 − h−p−ν2
)2 ≤ αi˜ ≤ hp−1m2(1 + h−p−ν2

)2 + m2h2p−1(h−p−ν2
+ h−ξ)2 (4.6)

As long as 0 < p < 2ξ, αi˜ = Θ
(︁
m2hp−1)︁

70



4.B. The asymptotics of the coefficients of the gradient of the squared loss (Proof of Lemma 5.2)

Bounding ||eĩ||2

eĩ = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩m2 ∑
j,k∈S
j ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj + (−2D)m2 ∑
j∈S
j ̸=i

(W⊤
i A∗

j )A∗
j

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩m2 ∑
j,k∈S
k ̸=i

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

Expanding further over the summation of the j and the k indices we have,

eĩ = ES∈S

[︄
1i∈S × m2

{︄
∑

j(=k)∈S\i
(W⊤

i A∗
j )(W

⊤
j A∗

j )Wj + ∑
j∈S\i

k∈S\i,j

(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj

+ ∑
j∈S\i
k=i

(W⊤
i A∗

i )(W
⊤
j A∗

i )Wj

}︄]︄

+ ES∈S

⎡⎢⎢⎣1i∈S × (−2D)m2

⎧⎪⎪⎨⎪⎪⎩∑
j∈S
j ̸=i

(W⊤
i A∗

j )A∗
j

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

[︄
1i∈S × m2

{︄
∑

k(=j)∈S\i
(W⊤

i Wk)(W⊤
k A∗

k )A∗
k + ∑

k∈S\i
j∈S\i,k

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k

+ ∑
k∈S\i

j=i

(W⊤
i Wi)(W⊤

i A∗
k )A∗

k

}︄]︄

Expanding the above in terms of qS we have,
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eĩ = m2

{︄
h

∑
j=1,j ̸=i

(W⊤
i A∗

j )(W
⊤
j A∗

j )Wj ∑
{S∈S:i,j∈S,i ̸=j}

qS +
h

∑
j,k=1
j ̸=k ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj ∑
{S∈S:i,j,k∈S,i ̸=j ̸=k}

qS

+
h

∑
j=1
j ̸=i

(W⊤
i A∗

i )(W
⊤
j A∗

i )Wj ∑
{S∈S:i,j∈S,i ̸=j}

qS

}︄

+ (−2D)m2

⎧⎪⎪⎨⎪⎪⎩
h

∑
j=1
j ̸=i

(W⊤
i A∗

j )A∗
j ∑
{S∈S:i,j∈S,i ̸=j}

qS

⎫⎪⎪⎬⎪⎪⎭
+ m2

{︄
h

∑
k=1
k ̸=i

(W⊤
i Wk)(W⊤

k A∗
k )A∗

k ∑
{S∈S:i,k∈S,i ̸=k}

qS +
h

∑
j,k=1
j ̸=i ̸=k

(W⊤
i Wj)(W⊤

j A∗
k )A∗

k ∑
{S∈S:i,j,k∈S,i ̸=j ̸=k}

qS

+
h

∑
k=1
k ̸=i

(W⊤
i Wi)(W⊤

i A∗
k )A∗

k ∑
{S∈S:i,k∈S,i ̸=k}

qS

}︄

Expanding the qS dependency in terms of qij and qijk we have,

eĩ = m2

{︄
h

∑
j=1,j ̸=i

qij(W⊤
i A∗

j )(W
⊤
j A∗

j )Wj +
h

∑
j,k=1
j ̸=k ̸=i

qijk(W⊤
i A∗

k )(W
⊤
j A∗

k )Wj

+
h

∑
j=1
j ̸=i

qij(W⊤
i A∗

i )(W
⊤
j A∗

i )Wj

}︄
+ (−2D)m2

⎧⎪⎪⎨⎪⎪⎩
h

∑
j=1
j ̸=i

qij(W⊤
i A∗

j )A∗
j

⎫⎪⎪⎬⎪⎪⎭
+ m2

{︄
h

∑
k=1
k ̸=i

qik(W⊤
i Wk)(W⊤

k A∗
k )A∗

k +
h

∑
j,k=1
j ̸=i ̸=k

qijk(W⊤
i Wj)(W⊤

j A∗
k )A∗

k

+
h

∑
k=1
k ̸=i

qik(W⊤
i Wi)(W⊤

i A∗
k )A∗

k

}︄

Upper bounding the norm of this vector ẽi we get,
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||eĩ|| ≤ m2h2p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2 + m2h3p−1

(︃
δ +

µ√
n

)︃2
(1 + δ)

+ m2h2p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2 + 2Dm2h2p−1

(︃
δ +

µ√
n

)︃
+ m2h2p−1

(︃
δ2 + 2δ +

µ√
n

)︃
(1 + δ) + m2h3p−1

(︃
δ2 + 2δ +

µ√
n

)︃(︃
δ +

µ√
n

)︃
+ m2h2p−1

(︃
δ +

µ√
n

)︃
(1 + δ)2

≤ m2h2p−1(h−p−ν2
+ 2h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ)

+ m2h3p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−2ξ + h−p−ν2−2ξ)

+ m2h2p−1(h−p−ν2
+ 2h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ)

+ 2Dm2h2p−1(h−p−ν2
+ h−ξ)

+ m2h2p−1(2h−p−ν2
+ 3h−2p−2ν2

+ h−3p−3ν2
+ h−p−ν2−ξ + h−ξ)

+ m2h3p−1(2h−2p−2ν2
+ h−3p−3ν2

+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ m2h2p−1(h−p−ν2
+ 2h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ) (4.7)

If D = 1 and 0 < p < ξ, we get ||eĩ|| = o(m2hp−1)

4.B.2 Estimating the m1 dependent parts of the derivative

We continue working in the same regime for the W matrix as in the previous subsection. Hence the
same inequalities as listed at the beginning of the previous subsection continue to hold and we use
them to get the following bounds,
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Bounding αiˆ

αiˆ = ES∈S

[︄
1i∈S ×

{︄
m2

1 ∑
k,l∈S
k ̸=l

(W⊤
i A∗

k )(W
⊤
i A∗

l )− 2m1 ∑
k∈S

ϵi(W⊤
i A∗

k ) + ϵ2
i

}︄]︄

= ES∈S

[︄
1i∈S ×

{︄
m2

1 ∑
k∈S
k ̸=i

⟨Wi, A∗
k ⟩⟨Wi, A∗

i ⟩+ m2
1 ∑

l∈S
l ̸=i

⟨Wi, A∗
i ⟩⟨Wi, A∗

l ⟩+ m2
1 ∑

k,l∈S
k ̸=l
k ̸=i
l ̸=i

⟨Wi, A∗
k ⟩⟨Wi, A∗

l ⟩

− 2m1ϵi⟨Wi, A∗
i ⟩ − 2m1 ∑

k∈S
k ̸=i

ϵi⟨Wi, A∗
k ⟩+ ϵ2

i

}︄]︄

= 2m2
1

h

∑
k=1
k ̸=i

⟨Wi, A∗
k ⟩⟨Wi, A∗

i ⟩ ∑
{S∈S:i,k∈S,k ̸=i}

qS + m2
1

h

∑
k,l=1
k ̸=l
k ̸=i
l ̸=i

⟨Wi, A∗
k ⟩⟨Wi, A∗

l ⟩ ∑
{S∈S:i,k,l∈S,k ̸=i ̸=l}

qS

− 2m1ϵi⟨Wi, A∗
i ⟩ ∑

{S∈S:i∈S}
qS − 2m1

h

∑
k=1
k ̸=i

ϵi⟨Wi, A∗
k ⟩ ∑

{S∈S:i,k∈S,k ̸=i}
qS + ϵ2

i ∑
{S∈S:i∈S}

qS

=⇒ αiˆ = 2m2
1

h

∑
k=1
k ̸=i

qik⟨Wi, A∗
k ⟩⟨Wi, A∗

i ⟩+ m2
1

h

∑
k,l=1
k ̸=l
k ̸=i
l ̸=i

qikl⟨Wi, A∗
k ⟩⟨Wi, A∗

l ⟩

− 2m1qiϵi⟨Wi, A∗
i ⟩ − 2m1

h

∑
k=1
k ̸=i

qikϵi⟨Wi, A∗
k ⟩+ qiϵ

2
i

We plugin ϵi = 2m1hp
(︂

δ + µ√
n

)︂
for i = 1, . . . , h

|αiˆ | ≤ 2m2
1h2p−1

(︃
δ +

µ√
n

)︃
(1 + δ) + m2

1h3p−1
(︃

δ +
µ√
n

)︃2
+ 4m2

1h2p−1(1 + δ)

(︃
δ +

µ√
n

)︃
+ 4m2

1h3p−1
(︃

δ +
µ√
n

)︃2
+ 4m2

1h3p−1
(︃

δ +
µ√
n

)︃2

= 2m2
1h2p−1(h−p−ν2

+ h−2p−2ν2
+ h−p−ν2−ξ + h−ξ) + m2

1h3p−1(h−2p−2ν2
+ 2h−p−ν2−ξ + h−2ξ)

+ 4m2
1h2p−1(h−p−ν2

+ h−2p−2ν2
+ h−ξ + h−p−ν2−ξ) + 4m2

1h3p−1(h−2p−2ν2
+ 2h−p−ν2−ξ + h−2ξ)

+ 4m2
1h3p−1(h−2p−2ν2

+ 2h−p−ν2−ξ + h−2ξ)

This means that if p < ξ, |αiˆ | = o(m2
1hp−1). Putting this together with the bounds obtained below

equation 4.6, we get that αi = Θ(m2hp−1) + o(m2
1hp−1).
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Bounding βiˆ

βiˆ = ES∈S

[︄
1i∈S ×

{︄
2Dm2

1 ∑
k∈S
k ̸=i

(W⊤
i A∗

k )− Dm1ϵi + m1 ∑
j∈S

ϵj(W⊤
i Wj)− m2

1 ∑
j,l∈S
l ̸=i

(W⊤
i Wj)(W⊤

j A∗
l )

}︄]︄

= 2Dm2
1

h

∑
k=1
k ̸=i

⟨Wi, A∗
k ⟩ ∑

{S∈S:i,k∈S,k ̸=i}
qS − Dm1ϵi ∑

{S∈S:i∈S}
qS + m1ϵi||Wi||2 ∑

{S∈S:i∈S}
qS

+ m1

h

∑
j=1,j ̸=i

ϵj⟨Wi, Wj⟩ ∑
{S∈S:i,j∈S,j ̸=i}

qS − m2
1

h

∑
l=1
l ̸=i

||Wi||2⟨Wi, A∗
l ⟩ ∑

{S∈S:i,l∈S,l ̸=i}
qS

− m2
1

h

∑
l=1
l ̸=i

⟨Wi, Wl⟩⟨Wl , A∗
l ⟩ ∑

{S∈S:i,l∈S,l ̸=i}
qS − m2

1

h

∑
j,l=1
l ̸=i

j ̸=l,i

⟨Wi, Wj⟩⟨Wj, A∗
l ⟩ ∑

{S∈S:i,j,l∈S,l ̸=i ̸=i}
qS

= 2Dm2
1

h

∑
k=1
k ̸=i

qik⟨Wi, A∗
k ⟩ − Dm1ϵiqi + m1ϵi||Wi||2qi + m1

h

∑
j=1,j ̸=i

ϵjqij⟨Wi, Wj⟩

− m2
1

h

∑
l=1
l ̸=i

||Wi||2⟨Wi, A∗
l ⟩qil − m2

1

h

∑
l=1
l ̸=i

⟨Wi, Wl⟩⟨Wl , A∗
l ⟩qil − m2

1

h

∑
j,l=1
l ̸=i

j ̸=l,i

⟨Wi, Wj⟩⟨Wj, A∗
l ⟩qijl

We plugin ϵi = 2m1hp
(︂

δ + µ√
n

)︂
for i = 1, . . . , h

|βiˆ | ≤ 4Dm2
1h2p−1

(︃
δ +

µ√
n

)︃
+ 2m2

1h2p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2 + 2m2

1h3p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ m2

1h2p−1(1 + δ)2
(︃

δ +
µ√
n

)︃
+ m2

1h2p−1
(︃

δ2 + 2δ +
µ√
n

)︃
(1 + δ)

+ m2
1h3p−1

(︃
δ2 + 2δ +

µ√
n

)︃(︃
δ +

µ√
n

)︃
= 4Dm2

1h2p−1(h−p−ν2
+ h−ξ)

+ 2m2
1h2p−1(h−p−ν2

+ 2h−2p−2ν2
+ h−3p−3ν2

+ h−ξ + 2h−p−ν2−ξ + h−2p−2ν2−ξ)

+ 2m2
1h3p−1(2h−2p−2ν2

+ h−3p−3ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ m2
1h2p−1(h−p−ν2

+ 2h−2p−2ν2
+ h−3p−3ν2

+ h−ξ + 2h−p−ν2−ξ + h−2p−2ν2−ξ)

+ m2
1h2p−1(3h−2p−2ν2

+ h−3p−3ν2
+ h−p−ν2−ξ + 2h−p−ν2

+ h−ξ)

+ m2
1h3p−1(2h−2p−2ν2

+ h−3p−3ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

This means that if p < ξ, |βiˆ | = o(m2
1hp−1). Putting this together with the bounds obtained below

4.4, we get that βi = Θ(m2hp−1) + o(m2
1hp−1).
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Bounding ||eî||2

eî = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩∑
j∈S
j ̸=i

ϵiϵjWj − m1 ∑
j,k∈S
j ̸=i

(W⊤
j A∗

k )Wjϵi − m1 ∑
j,k∈S
j ̸=i

ϵj(W⊤
i A∗

k )Wj

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

⏞ ⏟⏟ ⏞
ei1̂

+ ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m2

1 ∑
j,k,l∈S

j ̸=i
k ̸=l

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

ei2̂

+ ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2Dm2

1 ∑
j,k∈S
j ̸=i
k ̸=i

(W⊤
i A∗

k )A∗
j + Dm1 ∑

j∈S
j ̸=i

ϵi A∗
j

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

ei3̂

+ ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩−m1 ∑
j,k∈S
k ̸=i

ϵj(W⊤
i Wj)A∗

k + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

⏞ ⏟⏟ ⏞
ei4̂

We estimate the different summands separately.

ei1̂ = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩∑
j∈S
j ̸=i

ϵiϵjWj

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S × (−m1)

⎧⎪⎪⎨⎪⎪⎩ ∑
j(=k)∈S\i

(W⊤
j A∗

j )Wjϵi + ∑
j∈S\i

k∈S\i,j

(W⊤
j A∗

k )Wjϵi + ∑
j∈S\i
k=i

(W⊤
j A∗

i )Wjϵi

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S × (−m1)

⎧⎪⎪⎨⎪⎪⎩ ∑
j(=k)∈S\i

ϵj(W⊤
i A∗

j )Wj + ∑
j∈S\i

k∈S\i,j

ϵj(W⊤
i A∗

k )Wj + ∑
j∈S\i
k=i

ϵj(W⊤
i A∗

i )Wj

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

We substitute, ϵ = 2m1hp(h−p−ν2
+ h−ξ) and for any two vectors x and y and any two scalars a and

b we use the inequality, ||ax + by||2 ≤ |a|max||x||2,max + |b|max||y||2,maxto get,
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||ei1̂||2 ≤ 4m2
1h2p

(︃
δ +

µ√
n

)︃2 h

∑
j=1,j ̸=i

qij||Wj||

+ 2m2
1hp

(︃
δ +

µ√
n

)︃(︄ h

∑
j=1,j ̸=i

qij⟨Wj, A∗
j ⟩Wj +

h

∑
j,k=1,j ̸=i,k ̸=i,j

qijk⟨Wj, A∗
k ⟩Wj

+
h

∑
j=1,j ̸=i

qij⟨Wj, A∗
i ⟩Wj

)︄

+ 2m2
1hp

(︃
δ +

µ√
n

)︃(︄ h

∑
j=1,j ̸=i

qij⟨Wi, A∗
j ⟩Wj +

h

∑
j,k=1,j ̸=i,k ̸=i,j

qijk⟨Wi, A∗
k ⟩Wj

+
h

∑
j=1,j ̸=i

qij⟨Wi, A∗
i ⟩Wj

)︄

=⇒ ||ei1̂||2 ≤ 4m2
1h2ph2p−1(1 + δ)

(︃
δ +

µ√
n

)︃2

+ 2m2
1hp

(︃
δ +

µ√
n

)︃(︃
h2p−1(1 + δ)2 + h3p−1

(︃
δ +

µ√
n

)︃
(1 + δ) + h2p−1

(︃
δ +

µ√
n

)︃
(1 + δ)

)︃
+ 2m2

1hp
(︃

δ +
µ√
n

)︃(︃
h2p−1

(︃
δ +

µ√
n

)︃
(1 + δ) + h3p−1

(︃
δ +

µ√
n

)︃
(1 + δ) + h2p−1(1 + δ)2

)︃
=⇒ ||ei1̂||2 ≤ 4m2

1h4p−1(1 + δ)

(︃
δ +

µ√
n

)︃2

+ 2m2
1h3p−1

(︃
δ +

µ√
n

)︃
(1 + δ)2 + 2m2

1h4p−1
(︃

δ +
µ√
n

)︃2
(1 + δ)

+ 2m2
1h3p−1

(︃
δ +

µ√
n

)︃2
(1 + δ)

+ 2m2
1h3p−1

(︃
δ +

µ√
n

)︃2
(1 + δ) + 2m2

1h4p−1
(︃

δ +
µ√
n

)︃2
(1 + δ)

+ 2m2
1h3p−1

(︃
δ +

µ√
n

)︃
(1 + δ)2

=⇒ ||ei1̂||2 ≤ 8m2
1h4p−1(1 + δ)

(︃
δ +

µ√
n

)︃2
+ 4m2

1h3p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2

+ 4m2
1h3p−1

(︃
δ +

µ√
n

)︃2
(1 + δ)

=⇒ ||ei1̂||2 ≤ 8m2
1h4p−1(h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ 4m2
1h3p−1(h−p−ν2

+ h−3p−3ν2
+ 2h−2p−2ν2

+ h−ξ + h−2p−2ν2−ξ + 2h−p−ν2−ξ)

+ 4m2
1h3p−1(h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

= 8m2
1hp−1(hp−2ν2

+ h−3ν2
+ 2hp−ν2+p−ξ + 2h−2ν2+p−ξ + h−ν2+2p−2ξ + h3p−2ξ)

+ 4m2
1hp−1(hp−ν2

+ h−p−3ν2
+ 2h−2ν2

+ h2p−ξ + h−2ν2−ξ + 2h−ν2+p−ξ)

+ 4m2
1hp−1(h−2ν2

+ h−p−3ν2
+ 2h−ν2+p−ξ + 2h−2ν2−ξ + h−ν2+p−2ξ + h2p−2ξ)

From the above it follows that, ||ei1̂||2 = o(m2
1hp−1) for p < ν2 and 2p < ξ

And now we start to estimate ei2̂
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ei2̂ = ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S × m2
1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑

j,k,l∈S
j ̸=i
k ̸=l

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
= ES∈S

[︄
1i∈S × m2

1

{︄
∑
j∈S
j ̸=i

(W⊤
i A∗

j )(W
⊤
j A∗

i )Wj + ∑
j,k∈S

k ̸=j ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

i )Wj

+ ∑
j∈S
j ̸=i

(W⊤
i A∗

i )(W
⊤
j A∗

j )Wj

+ ∑
j,l∈S

l ̸=j ̸=i

(W⊤
i A∗

i )(W
⊤
j A∗

l )Wj + ∑
j,l∈S

l ̸=j ̸=i

(W⊤
i A∗

j )(W
⊤
j A∗

l )Wj + ∑
j,k∈S

k ̸=j ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

j )Wj

+ ∑
j,k,l∈S

l ̸=k ̸=j ̸=i

(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

}︄]︄

=⇒ ei2̂ = m2
1

{︄
h

∑
j=1
j ̸=i

qij(W⊤
i A∗

j )(W
⊤
j A∗

i )Wj +
h

∑
j,k=1

k ̸=j ̸=i

qijk(W⊤
i A∗

k )(W
⊤
j A∗

i )Wj

+
h

∑
j=1
j ̸=i

qij(W⊤
i A∗

i )(W
⊤
j A∗

j )Wj

⏞ ⏟⏟ ⏞
a

+
h

∑
j,l=1

l ̸=j ̸=i

qijl(W⊤
i A∗

i )(W
⊤
j A∗

l )Wj +
h

∑
j,l=1

l ̸=j ̸=i

qijl(W⊤
i A∗

j )(W
⊤
j A∗

l )Wj +
h

∑
j,k=1

k ̸=j ̸=i

qijk(W⊤
i A∗

k )(W
⊤
j A∗

j )Wj

+ ∑
j,k,l∈S

l ̸=k ̸=j ̸=i

qijkl(W⊤
i A∗

k )(W
⊤
j A∗

l )Wj

}︄

=⇒ ||ei2̂|| ≤ m2
1

{︄
h2p−1

(︃
δ +

µ√
n

)︃2
(1 + δ) + h3p−1

(︃
δ +

µ√
n

)︃2
(1 + δ) + ||a||

+ h3p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2 + h3p−1

(︃
δ +

µ√
n

)︃2
(1 + δ) + h3p−1

(︃
δ +

µ√
n

)︃
(1 + δ)2

+ h4p−1
(︃

δ +
µ√
n

)︃2
(1 + δ)

}︄
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=⇒ ||ei2̂|| ≤ m2
1

{︄
h2p−1(h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ h3p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ ||a||
+ h3p−1(h−p−ν2

+ h−3p−3ν2
+ 2h−2p−2ν2

+ h−2p−2ν2−ξ + 2h−p−ν2−ξ + h−ξ)

+ h3p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ h3p−1(h−p−ν2
+ h−3p−3ν2

+ 2h−2p−2ν2
+ h−2p−2ν2−ξ + 2h−p−ν2−ξ + h−ξ)

+ h4p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

}︄

=⇒ ||ei2̂|| ≤ m2
1

{︄
hp−1(h−p−2ν2

+ h−2p−3ν2
+ 2h−ν2−ξ + 2h−p−2ν2−ξ + h−ν2−2ξ + hp−2ξ)

+ hp−1(h−2ν2
+ h−p−3ν2

+ 2h−ν2+p−ξ + 2h−2ν2−ξ + h−ν2+p−2ξ + h2p−2ξ)

+ ||a||
+ hp−1(hp−ν2

+ h−p−3ν2
+ 2h−2ν2

+ h−2ν2−ξ + 2h−ν2+p−ξ + h2p−ξ)

+ hp−1(h−2ν2
+ h−p−3ν2

+ 2h−ν2+p−ξ + 2h−2ν2−ξ + h−ν2+p−2ξ + h2p−2ξ)

+ hp−1(hp−ν2
+ h−2p−3ν2

+ 2h−2ν2
+ h−2ν2−ξ + 2h−ν2+p−ξ + h2p−ξ)

+ hp−1(hp−2ν2
+ h−3ν2

+ 2hp−ν2+p−ξ + 2h−2ν2+p−ξ + h−ν2+2p−2ξ + h3p−2ξ)

}︄

Now let us find a bound for ||a||.

a =
h

∑
j=1
j ̸=i

qij(W⊤
i A∗

i )(W
⊤
j A∗

j )Wj

= ⟨Wi, A∗
i ⟩qijW⊤

−jdiag(W−j A∗
−j)

Where A∗
−j is the dictionary A∗ with the jth column set to zero, W−j is the dictionary W with the jth

row set to zero, and diag(W−j A∗
−j) is the h-dimensional vector containing the diagonal elements of

the matrix W−j A∗
−j. We also make use of the distributional assumption that qij is the same for all i, j

in order to pull qij out of the sum.

||a||2 = h2p−2⟨Wi, A∗
i ⟩||W⊤

−jdiag(W−j A∗
−j)||2

≤ h2p−2(1 + δ)||W⊤
−j||2||diag(W−j A∗

−j)||2
≤ h2p−2(1 + δ)2h1/2

√︂
λmax(W⊤

−jW−j)

≤ h2p−2(1 + δ)2h1/2

√︄
h
(︃

δ2 + 2δ +
µ√
n

)︃
+ (1 + δ)2

= hp−1

√︄
h2p−2 × h × (1 + δ)4 ×

(︃
h
(︃

δ2 + 2δ +
µ√
n

)︃
+ (1 + δ)2

)︃
= hp−1

√︃
h2p−1 × (1 + h−p−ν2

)4 ×
(︂

h(h−2p−2ν2
+ 2h−p−ν2

+ h−ξ) + (1 + h−p−ν2
)2
)︂

= hp−1
√︂
(1 + h−p−ν2

)4 × (h−2ν2 + 2hp−ν2
+ h2p−ξ + h2p−1(1 + h−p−ν2

)2)

Here ||W⊤
−j||2 is the spectral norm of W⊤

−j, and is the top singular value of the matrix. We use Gersh-

gorin’s Circle theorem to bound the top eigenvalue of W⊤
−jW−j by its maximum row sum.
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If p < ξ
2 , p < 1

2 , and p < ν2, then ||ei2̂|| = o(m2
1hp−1)

And now we start to estimate ei3̂ as follows.

ei3̂ = ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dm1 ∑

j∈S
j ̸=i

ϵi A∗
j − 2Dm2

1 ∑
j,k∈S
j ̸=i
k ̸=i

(W⊤
i A∗

k )A∗
j

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

= ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩Dm1 ∑
j∈S
j ̸=i

ϵi A∗
j − 2Dm2

1 ∑
j∈S
j ̸=i

(W⊤
i A∗

j )A∗
j − 2Dm2

1 ∑
j,k∈S

k ̸=j ̸=i

(W⊤
i A∗

k )A∗
j

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= Dm1

h

∑
j=1
j ̸=i

ϵi A∗
j ∑
{S∈S:i,j∈S,i ̸=j}

qS − 2Dm2
1

h

∑
j=1
j ̸=i

(W⊤
i A∗

j )A∗
j ∑
{S∈S:i,j∈S,i ̸=j}

qS

− 2Dm2
1

h

∑
j,k=1

k ̸=j ̸=i

(W⊤
i A∗

k )A∗
j ∑
{S∈S:i,j,k∈S,i ̸=j ̸=k}

qS

= Dm1

h

∑
j=1
j ̸=i

qijϵi A∗
j − 2Dm2

1

h

∑
j=1
j ̸=i

qij(W⊤
i A∗

j )A∗
j − 2Dm2

1

h

∑
j,k=1

k ̸=j ̸=i

qijk(W⊤
i A∗

k )A∗
j

We plugin ϵi = 2m1hp
(︂

δ + µ√
n

)︂
for i = 1, . . . , h

||ei3̂|| ≤ 2Dm2
1h3p−1

(︃
δ +

µ√
n

)︃
+ 2Dm2

1h2p−1
(︃

δ +
µ√
n

)︃
+ 2Dm2

1h3p−1
(︃

δ +
µ√
n

)︃
= 4Dm2

1h3p−1(h−p−ν2
+ h−ξ) + 2Dm2

1h2p−1(h−p−ν2
+ h−ξ)

= 4Dm2
1hp−1(hp−ν2

+ h2p−ξ) + 2Dm2
1hp−1(h−ν2

+ hp−ξ)

This means for D = 1, p < ν2 and p < ξ
2 , we have ||ei3̂|| = o(m2

1hp−1)
And now we start to estimate ei4̂ as follows.
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ei4̂ = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩−m1 ∑
j,k∈S
k ̸=i

ϵj(W⊤
i Wj)A∗

k + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= ES∈S

⎡⎢⎢⎣1i∈S × (−m1)

⎧⎪⎪⎨⎪⎪⎩ ∑
k(=j)∈S\i

ϵk(W⊤
i Wk)A∗

k + ∑
j∈S\i

k∈S\i,j

ϵj(W⊤
i Wj)A∗

k + ∑
k∈S\i

j=i

ϵj(W⊤
i Wi)A∗

k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S × m2
1

⎧⎪⎪⎨⎪⎪⎩ ∑
j,k,l∈S
k ̸=i,l

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= ES∈S

⎡⎢⎢⎣1i∈S × (−m1)

⎧⎪⎪⎨⎪⎪⎩ ∑
k(=j)∈S\i

ϵk(W⊤
i Wk)A∗

k + ∑
j∈S\i

k∈S\i,j

ϵj(W⊤
i Wj)A∗

k + ∑
k∈S\i

j=i

ϵj(W⊤
i Wi)A∗

k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

[︄
1i∈S × m2

1

{︄
∑
k∈S
k ̸=i

(W⊤
i Wi)(W⊤

i A∗
i )A∗

k + ∑
k∈S
k ̸=i

(W⊤
i Wk)(W⊤

k A∗
i )A∗

k + ∑
j,k∈S
j ̸=k ̸=i

(W⊤
i Wj)(W⊤

j A∗
i )A∗

k

+ ∑
k,l∈S
̸=k ̸=i

(W⊤
i Wi)(W⊤

i A∗
l )A∗

k + ∑
k,l∈S
l ̸=k ̸=i

(W⊤
i Wk)(W⊤

k A∗
l )A∗

k + ∑
k,l∈S
l ̸=k ̸=i

(W⊤
i Wl)(W⊤

l A∗
l )A∗

k

+ ∑
j,k,l∈S

j ̸=k ̸=l ̸=i

(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

}︄]︄

ei4̂ = (−m1)

⎧⎪⎪⎨⎪⎪⎩
h

∑
k=1,k ̸=i

qikϵk(W⊤
i Wk)A∗

k +
h

∑
j,k=1
j ̸=k ̸=i

qijkϵj(W⊤
i Wj)A∗

k +
h

∑
k=1
k ̸=i

qikϵi(W⊤
i Wi)A∗

k

⎫⎪⎪⎬⎪⎪⎭
+ m2

1

{︄
h

∑
k=1
k ̸=i

qik(W⊤
i Wi)(W⊤

i A∗
i )A∗

k

⏞ ⏟⏟ ⏞
b

+
h

∑
k=1
k ̸=i

qik(W⊤
i Wk)(W⊤

k A∗
i )A∗

k +
h

∑
j,k=1
j ̸=k ̸=i

qijk(W⊤
i Wj)(W⊤

j A∗
i )A∗

k

+
h

∑
k,l=1
l ̸=k ̸=i

qikl(W⊤
i Wi)(W⊤

i A∗
l )A∗

k +
h

∑
k,l=1
l ̸=k ̸=i

qikl(W⊤
i Wk)(W⊤

k A∗
l )A∗

k +
h

∑
k,l=1
l ̸=k ̸=i

qikl(W⊤
i Wl)(W⊤

l A∗
l )A∗

k

+
h

∑
j,k,l=1

j ̸=k ̸=l ̸=i

qijkl(W⊤
i Wj)(W⊤

j A∗
l )A∗

k

}︄

We plugin ϵi = 2m1hp
(︂

δ + µ√
n

)︂
for i = 1, . . . , h in the above to get,
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||ei4̂|| ≤ 2m2
1h3p−1

(︃
δ +

µ√
n

)︃2
+ 2m2

1h4p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ 2m2

1h3p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2

+ m2
1||b||+ m2

1h2p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ m2

1h3p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ m2

1h3p−1(1 + δ)2
(︃

δ +
µ√
n

)︃
+ m2

1h3p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ m2

1h3p−1(1 + δ)

(︃
δ2 + 2δ +

µ√
n

)︃
+ m2

1h4p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
=⇒ ||ei4̂|| ≤ 2m2

1h3p−1
(︃

δ +
µ√
n

)︃2
+ 3m2

1h4p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ 3m2

1h3p−1
(︃

δ +
µ√
n

)︃
(1 + δ)2

+ m2
1||b||+ m2

1h2p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ 2m2

1h3p−1
(︃

δ +
µ√
n

)︃(︃
δ2 + 2δ +

µ√
n

)︃
+ m2

1h3p−1(1 + δ)

(︃
δ2 + 2δ +

µ√
n

)︃
=⇒ ||ei4̂|| ≤ 2m2

1h3p−1(h−2p−2ν2
+ 2h−p−ν2−ξ + h−2ξ)

+ 3m2
1h4p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ 3m2
1h3p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ + h−p−ν2

)

+ m2
1||b||

+ m2
1h2p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ 2m2
1h3p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ m2
1h3p−1(h−3p−3ν2

+ 3h−2p−2ν2
+ h−p−ν2−ξ + h−ξ + 2h−p−ν2

)

=⇒ ||ei4̂|| ≤ 2m2
1hp−1(h−2ν2

+ 2h−ν2+p−ξ + h2p−2ξ)

+ 3m2
1hp−1(h−3ν2

+ 2h−p−2ν2
+ 3hp−ν2+p−ξ + h−2ν2+p−ξ + h3p−2ξ)

+ 3m2
1hp−1(h−p−3ν2

+ 2h−2ν2
+ 2h−ν2+p−ξ + h−2ν2−ξ + h2p−ξ + hp−ν2

)

+ m2
1||b||

+ m2
1hp−1(h−2p−3ν2

+ 2h−p−2ν2
+ 3h−ν2−ξ + h−p−2ν2−ξ + hp−2ξ)

+ 2m2
1hp−1(h−p−3ν2

+ 2h−2ν2
+ 3h−ν2+p−ξ + h−2ν2−ξ + h2p−2ξ)

+ m2
1hp−1(h−p−3ν2

+ 3h−2ν2
+ h−ν2+p−ξ + h2p−ξ + 2hp−ν2

)

Now let us find a bound for ||b||.

b =
h

∑
k=1
k ̸=i

qik(W⊤
i Wi)(W⊤

i A∗
i )A∗

k

= ⟨Wi, Wi⟩⟨Wi, A∗
i ⟩qik A∗

−i1h

Where A∗
−i is the dictionary A∗ with the ith column set to zero, and 1h ∈ Rh is the h-dimensional

vector of all ones. Here we make use of the distributional assumption that qik is the same for all i, k
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in order to pull qik out of the sum.

||b||2 = h2p−2⟨Wi, Wi⟩⟨Wi, A∗
i ⟩||A∗

−i1h||2
≤ h2p−2(1 + δ)3||A∗

−i||2||1h||2
= h2p−2(1 + δ)3h1/2

√︂
λmax(A∗⊤

−i A∗
−i)

= h2p−2(1 + δ)3h1/2
√︃

h
µ√
n
+ 1

= hp−1

√︄
h2p−2 × h × (1 + δ)6 ×

(︃
h

µ√
n
+ 1
)︃

= hp−1
√︂

h2p−1 × (1 + h−p−ν2
)6 ×

(︁
h1−ξ + 1

)︁
= hp−1

√︂
(1 + h−p−ν2

)6 × (h2p−ξ + h2p−1)

Here ||A∗
−i||2 is the spectral norm of A∗

−i, and is the top singular value of the matrix. We use Gersh-
gorin’s Circle theorem to bound the top eigenvalue of A∗⊤

−i A∗
−i by its maximum row sum.

If p < ξ
2 , p < 1

2 , and p < ν2, then ||ei4̂|| = o(m2
1hp−1). Now we combine the above obtained

bounds for ∥eitˆ ∥ (for t ∈ {1, 2, 3, 4}) with the bound obtained below equation 4.7 to say that, ∥ei∥ =
o(max{m2

1, m2}hp−1)

4.B.3 About αi − βi

Remembering that D = 1 and doing a close scrutiny of the terms in 4.6 and 4.4 will indicate that the
coefficients are the same for the m2hp−1 term in each of them. (which is the term with the highest h
scaling in the m2 dependent parts of αi and βi). So this largest term cancels off in the difference and
we are left with the sub-leading order terms coming from both their m2

1 as well as the m2 parts and
this gives us,

αi − βi = o(max{m2
1, m2}hp−1)
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Chapter 5
Understanding Adaptive Gradient Algorithms

5.1 Introduction

Many optimization questions arising in machine learning can be cast as a finite sum optimization
problem of the form: minx f (x) where f (x) = 1

k ∑k
i=1 fi(x). Most neural network problems also fall

under a similar structure where each function fi is typically non-convex. A well-studied algorithm to
solve such problems is Stochastic Gradient Descent (SGD), which uses updates of the form: xt+1 :=
xt − α∇ fit(xt), where α is a step size, and fit is a function chosen randomly from { f1, f2, . . . , fk} at
time t.

Often in neural networks, “momentum” is added to the SGD update to yield a two-step update
process given as: vt+1 = µvt − α∇ f̃ it(xt) followed by xt+1 = xt + vt+1. This algorithm is typi-
cally called the Heavy-Ball (HB) method (or sometimes classical momentum), with µ > 0 called the
momentum parameter (Polyak, 1987). In the context of neural nets, another variant of SGD that is
popular is Nesterov’s Accelerated Gradient (NAG), which can also be thought of as a momentum
method (Sutskever et al., 2013), and has updates of the form vt+1 = µvt − α∇ f̃ it(xt + µvt) followed
by xt+1 = xt + vt+1 (see Algorithm 5 for more details).

Momentum methods like HB and NAG have been shown to have superior convergence properties
compared to gradient descent both for convex and non-convex functions (Nesterov, 1983; Polyak,
1987),
(Zavriev and Kostyuk, 1993; Ochs, 2016; O’Neill and Wright, 2017; Jin, Netrapalli, and Jordan, 2017).
To the best of our knowledge, when using a stochastic gradient oracle there is no clear theoretical
justification yet known of the benefits of NAG and HB over regular SGD in general (Yuan, Ying,
and Sayed, 2016; Kidambi et al., 2018; Wiegerinck, Komoda, and Heskes, 1994; Yang, Lin, and Li,
2016; Gadat, Panloup, Saadane, et al., 2018), unless considering specialized function classes (Loizou
and Richtárik, 2017). But in practice, these momentum methods, and in particular NAG, have been
repeatedly shown to have good convergence and generalization on a range of neural net problems
(Sutskever et al., 2013; Lucas, Zemel, and Grosse, 2018; Kidambi et al., 2018).

The performance of NAG (as well as HB and SGD), however, are typically quite sensitive to the se-
lection of its hyper-parameters: step size, momentum and batch size (Sutskever et al., 2013). Thus,
“adaptive gradient” algorithms such as RMSProp (Algorithm 6) (Tieleman and Hinton, 2012) and
ADAM (Algorithm 7) (Kingma and Ba, 2014) have become very popular for optimizing deep neural
networks (Melis, Dyer, and Blunsom, 2017; Denkowski and Neubig, 2017; Gregor et al., 2015; Rad-
ford, Metz, and Chintala, 2015; Bahar et al., 2017). The reason for their widespread popularity seems
to be the fact that they are easier to tune than SGD, NAG or HB. Adaptive gradient methods use as
their update direction a vector which is the image of a linear combination of all the gradients seen
till now, under a linear transformation (often called the “diagonal pre-conditioner”) constructed out
of the history of the gradients. It is generally believed that this “pre-conditioning” makes these al-
gorithms much less sensitive to the selection of its hyper-parameters. A precursor to RMSProp and
ADAM was the AdaGrad algorithm, (Duchi, Hazan, and Singer, 2011).

Despite their widespread use in the deep-learning community, till our work, adaptive gradients
methods like RMSProp and ADAM have lacked any theoretical justifications in the non-convex set-
ting - even with exact/deterministic gradients (Bernstein et al., 2018). On the contrary, intriguing
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5.1. Introduction

recent works like Wilson et al., 2017 and Keskar and Socher, 2017 have shown cases where SGD (no
momentum) and HB (classical momentum) generalize much better than RMSProp and ADAM with
stochastic gradients. In particular Wilson et al., 2017 showed that ADAM generalizes poorly for large
enough nets and that RMSProp generalizes better than ADAM on a couple of neural network tasks
(most notably in the character-level language modeling task). But in general it’s not clear and no
heuristics are known to the best of our knowledge to decide whether these insights about relative
performances (generalization or training) between algorithms hold for other models or carry over to
the full-batch setting.

Most notably in Reddi, Kale, and Kumar, 2018 the authors showed that in the setting of online convex
optimization there are certain sequences of convex functions where ADAM and RMSprop fail to
converge to asymptotically zero average regret.

5.1.1 A summary of our contributions

In this work we shed light on the above described open questions about adaptive gradient methods
in the following two ways.

• To the best of our knowledge, this work gives the first convergence guarantees for RMSProp
and ADAM under any setting. Specifically (a) in Section 5.3 we show stochastic gradient oracle
conditions for which RMSProp can converge to approximate criticality for smooth non-convex
objectives. Most interesting among these is the “interpolating” oracle condition that we moti-
vate and which we show helps stochastic RMSPRop converge at gradient descent speeds. (b)
In Section 5.5 we show run-time bounds s.t for certain regimes of hyper-parameters and classes
of smooth non-convex functions deterministic RMSProp and ADAM can reach approximate
criticality.

• Our second contribution (in Section 5.7) is to undertake a detailed empirical investigation into
adaptive gradient methods, targeted to probe the competitive advantages of RMSProp and
ADAM. We compare the convergence and generalization properties of RMSProp and ADAM
against NAG on (a) a variety of autoencoder experiments on MNIST data, in both full and mini-
batch settings and (b) on image classification task on CIFAR-10 using a VGG-9 convolutional
neural network in the mini-batch setting.

In the full-batch setting, we demonstrate that ADAM with very high values of the momentum
parameter (β1 = 0.99) matches or outperforms carefully tuned NAG and RMSProp, in terms of
getting lower training and test losses. We show that as the autoencoder size keeps increasing,
RMSProp fails to generalize pretty soon. In the mini-batch experiments we see exactly the same
behaviour for large enough nets.

We also demonstrate the enhancement in ADAM’s ability to get lower population risk values
and gradient norms when the ξ parameter is increased. Thus we conclude that this is a crucial
hyperparameter that was incidentally not tuned in studies like Wilson et al., 2017

Remark. The counterexample to ADAM’s convergence constructed in Theorem 3 in Reddi, Kale, and
Kumar, 2018 is in the stochastic optimization framework and is incomparable to our result about
deterministic ADAM. Thus our result establishes a key conceptual point that for adaptive gradient
algorithms one cannot transfer intuitions about convergence from online setups to their more com-
mon use case in offline setups.

On the experimental side we note that recently it has been shown by Lucas, Zemel, and Grosse,
2018, that there are problems where NAG generalizes better than ADAM even after tuning β1 (see
Algorithm 7). In contrast our experiments reveal controlled setups where tuning ADAM’s β1 closer
to 1 than usual practice helps close the generalization gap with NAG and HB which exists at standard
values of β1.
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5.1.2 Comparison with concurrent proofs in literature

Much after this work was completed we came to know of Li and Orabona, 2018 and Ward, Wu,
and Bottou, 2019 which analyzed similar questions as us though none of them address RMSProp or
ADAM. The latter of these two shows convergence on smooth non-convex objectives of a form of
AdaGrad where adaptivity is limited to only rescaling the currently sampled stochastic gradient. In
a similar setup the former reference analyzes convergence rates of a modification of AdaGrad where
the currently sampled stochastic gradient does not affect the pre-conditioner. We emphasize that this
is a conceptually significant departure from the framework of famously successful adaptive gradient
algorithms and experimentally this modification can be shown to hurt the performance. After the
initial version of our work De, Mukherjee, and Ullah, 2018 was made public, a flurry of activity
happened in this field towards trying to prove better convergence results for ADAM and RMSProp
like algorithms, (Chen et al., 2018; Zhou et al., 2018a; Zou et al., 2018b; Zaheer et al., 2018) and (Chen
and Gu, 2018). Most recently in Staib et al., 2019 a massive modification of RMSProp has been shown
to have the ability to converge to approximate second order critical points.

For the convergence proofs to work the above papers have introduced one or more of the following
modifications : (1) while attempting to prove convergence of stochastic RMSProp and/or ADAM
they have either forced the stochastic oracle to be a bounded random variable or they have introduced
time-decay in the adaptivity parameters, β1 (that controls the momentum adaptivity) and the β2 (that
controls the historical contribution of the squared gradients). (2) they introduce many extra steps
(like most notably in Staib et al., 2019 and Chen and Gu, 2018) than there are in the standard software
implementations of ADAM or RMSProp which are successful in the real world.

Unlike all the above results, in our following first-of-its-kind characterizations of different conditions
for the convergence of RMSProp and ADAM, we do not modify the structure of the extremely success-
ful implementations of RMSProp or ADAM (including keeping the adaptivity and the momentum
parameters to constants) and in particular for stochastic RMSProp we demonstrate the first-of-its-
kind examples of stochastic oracles for which sub-linear rate of convergence to criticality is possible
while also using constant step-sizes.

5.2 Pseudocodes

Towards stating the pesudocodes used for NAG, RMSProp and ADAM in theory and experiments,
we need the following definition of square-root of diagonal matrices,

Definition 17. Square root of the Penrose inverse If v ∈ Rd and V = diag(v) then we define,
V− 1

2 := ∑i∈Support(v)
1√
vi

eieT
i , where {ei}{i=1,...,d} is the standard basis of Rd

Algorithm 5 Nesterov’s Accelerated Gradient (NAG)

1: Input : A step size α, momentum µ ∈ [0, 1), and an initial starting point x1 ∈ Rd,

and we are given query access to a (possibly noisy) Oracle for gradients of

f : Rd → R.

2: function NAG(x1, α, µ)
3: Initialize : v1 = 0
4: for t = 1, 2, . . . do

5: When queried with xt, the Oracle replies with gt s.t E[gt] = ∇ f (xt)
6: vt+1 = µvt +∇ f (xt)
7: xt+1 = xt − α(gt + µvt+1)
8: end for

9: end function
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Algorithm 6 RMSProp

1: Input : A constant vector Rd ∋ ξ1d ≥ 0, parameter β2 ∈ [0, 1), step size

α, initial starting point x1 ∈ Rd, and we are given query access to a (possibly

noisy) oracle for gradients of f : Rd → R.

2: function RMSProp(x1, β2, α, ξ)
3: Initialize : v0 = 0
4: for t = 1, 2, . . . do

5: When queried with xt, the Oracle replies with gt s.t E[gt] = ∇ f (xt)
6: vt = β2vt−1 + (1 − β2)(g2

t + ξ1d)
7: Vt = diag(vt)

8: xt+1 = xt − αV− 1
2

t gt
9: end for

10: end function

Algorithm 7 ADAM

1: Input : A constant vector Rd ∋ ξ1d > 0, parameters β1, β2 ∈ [0, 1), a sequence

of step sizes {αt}t=1,2.., initial starting point x1 ∈ Rd, and we are given Oracle

access to (possibly noisy) estimates of gradients of f : Rd → R.

2: function ADAM(x1, β1, β2, α, ξ)
3: Initialize : m0 = 0, v0 = 0
4: for t = 1, 2, . . . do

5: When queried with xt, the Oracle replies with gt s.t E[gt] = ∇ f (xt)
6: mt = β1mt−1 + (1 − β1)gt
7: vt = β2vt−1 + (1 − β2)g2

t
8: Vt = diag(vt)

9: xt+1 = xt − αt

(︂
V

1
2

t + diag(ξ1d)
)︂−1

mt

10: end for

11: end function

5.3 Sufficient conditions for convergence to criticality for stochas-
tic RMSProp

Previously it has been shown in Rangamani et al., 2017 that mini-batch RMSProp can off-the-shelf
do autoencoding on depth 2 autoencoders trained on MNIST data while similar results using non-
adaptive gradient descent methods requires much tuning of the step-size schedule. Here we give
the first results about convergence to criticality for stochastic RMSProp. Towards that we need the
following definitions,

Definition 18. L−smoothness If f : Rd → R is at least once differentiable then we call it L−smooth
for some L > 0 if for all x, y ∈ Rd the following inequality holds, f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩+
L
2 ∥y − x∥2

Definition 19 ((ξ, c, f )−Constrained Oracle).
For some ξ > 0 and c > 0 and an atleast once differentiable objective function f : Rd → R, a
(ξ, c, f )−Constrained Oracle when queried at xt ∈ Rd replies with the vector gt ∈ Rd s.t it satisfies the
following inequality,

E

⎡⎣(︄∥gt∥+
√︁

dξ

2

)︄2
⎤⎦ ≤

(︄
√

c∥∇ f (xt)∥ −
√︁

dξ

2

)︄2
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Remark. Seeing the stochastic algorithm as a stochastic process {x1, . . .}, in the proof we will need the

above inequality to hold only for the conditional expectation of
(︃
∥gt∥+

√
dξ

2

)︃2
w.r.t the the sigma

algebra generated by {x1, . . . , xt}.

Intuition for the above oracle condition In a typical use-case of ADAM or RMSProp, gt is an un-
biased estimate of the gradient of the empirical loss f given as, f = 1

k ∑k
i=1 fi where fi is the Rd → R

loss function evaluated on the ith−data point. If one were training say neural nets then the “d” above
would be the number of trainable parameters of the net which is typically in tens of millions. When queried
at parameter value xt ∈ Rd, a standard instantiation of the oracle is that it returns, gt = ∇ fi(xt) af-
ter sampling fi uniformly at random from { f j}k

j=1. Suppose xc is a parameter value s.t it is critical

to all the { f j}k
j=1 then xc is also a critical point of f . If the class of functions is large enough (like

those corresponding to deep nets used in practice) that for some parameter values it can interpo-
late the training data and then for loss functions lowerbounded by 0, such candidate xcs are these
interpolating parameter values.

By continuity of the gradient of fis, the above oracle when queried in a neighbourhood of the inter-
polating x′s returns a vector of infinitesimal norm and in those neighbourhoods the true gradient is
also infinitesimal. Thus if the algorithm is started in such a neighbourhood and if it never escapes
such a neighbourhood then we can see that the oracle condition proposed in definition 19 gives a
way to abstractly capture this phenomenon.

Remark. In Section 5.4 we shall define a slightly different (and somewhat less intuitive) oracle condition and
show how it can be explicitly instantiated and indicate that it also leads to the same theorem as given below.

Now we can demonstrate the power of this definition by proving the following theorem which lever-
ages this condition gives the first proof of convergence of stochastic RMSProp.

Theorem 5.3.1. Fast Stochastic RMSProp with the (ξ, c, f )−Constrained Oracle (Proof in Section
5.8.1) Suppose f : Rd → R is L−smooth and ∃ σ > 0 s.t ∥∇i f (x)∥ ≤ σ for all x ∈ Rd and i ∈
{1, . . . , d}. Now suppose that we run the RMSProp algorithm as defined in Algorithm 6 (with query
access to conditionally unbiased estimator of the gradient of f ) and the oracle additionally satisfying

the (ξ, c, f )−constraint condition given in Definition 19 s.t σ <
(︂

ξ
2c

)︂ 2
3

and β2 is chosen so that,
cσ1.5

ξ <
√︁

β2(1 − β2). 1 Then there exists a choice of constant step-size α for the algorithm such that

for T = O( 1
ϵ2 ) steps we have,

E[ min
i=1,...,T

∥∇ f (xi)∥2] ≤ O(ϵ2)

Remark. (a) Note that here we see a stochastic algorithm being able to converge at the same fast
speed as is characteristic of SGD on differentiable convex functions with a global minimum. This
result can be contrasted with corollary 3 in Zaheer et al., 2018 where similar speeds were motivated
for RMSProp with mini-batch sizes being unrealistically large i.e as big as the number of steps to
required to converge. In our above theorem such a convergence is seen to arise as a more general
phenomenon because of a certain control being true on the expected value of the norm of the gradient
oracle’s reply. (b) Long after this work was completed, we became aware of works like Vaswani,
Bach, and Schmidt, 2018 where oracle conditions were introduced of the similar kind as above to
show enhanced convergence speeds of much simpler algorithms like SGD.

Now we demonstrate yet another situation for which stochastic RMSProp can be shown to converge
and this time we directly put constraints on the training data to get the convergence instead of using
oracle conditions as above. Towards this we need the following definition,

1Since the constants c, σ and ξ are constrained s.t cσ1.5

ξ < 1
2 , it follows that a choice of β2 as required always exists.
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5.4. Later improvements to the proof of sub-linear convergence of stochastic RMSProp

Definition 20 (The sign function). We define the function sign : Rd → {−1, 1}d s.t it maps v ↦→
(1 if vi ≥ 0 else − 1)i=1,...,d.

Theorem 5.3.2 (Standard speed stochastic RMSProp with a sign constrained oracle (Proof in Ap-
pendix 5.A)). Let f : Rd → R be L−smooth and be of the form f = 1

k ∑k
p=1 fp s.t. (a) each fi is at least

once differentiable, (b) the gradients are s.t ∀x ∈ Rd, ∀p, q ∈ {1, . . . , k}, sign(∇ fp(x)) = sign(∇ fq(x))
, (c) σf < ∞ is an upperbound on the norm of the gradients of fi and (d) f has a minimizer, i.e., there
exists x∗ such that f (x∗) = minx∈Rd f (x).

Let the gradient oracle be s.t when invoked at some xt ∈ Rd it uniformly at random picks it ∼
{1, 2, .., k} and returns, ∇ fit(xt) = gt. Then corresponding to any ϵ, ξ > 0 and a starting point x1 for

Algorithm 6, we can define, T ≤ 1
ϵ4

(︃
2Lσ2

f (σ
2
f +ξ)( f (x1)− f (x∗))
(1−β2)ξ

)︃
s.t. we are guaranteed that the iterates

of Algorithm 6 using a constant step-length of, α = 1√
T

√︃
2ξ(1−β2)( f (x1)− f (x∗))

σ2
f L

will find an ϵ−critical

point in at most T steps in the sense that, mint=1,2...,T E[∥∇ f (xt)∥2] ≤ ϵ2.

Remark. We note that the theorem above continues to hold even if the constraint (b) that we have
about the signs of the gradients of the { fp}p=1,...,k holds only on the points in Rd that the stochastic
RMSProp visits. Further we can say in otherwords that this constraint ensures that all the options
for the gradient that this stochastic oracle has at any point, lie in the same orthant of Rd though this
orthant itself may change from one iterate of the next. Note that the assumption also ensures that if
for some coordinate i, ∇i f = 0 then for all p ∈ {1, . . . , k}, ∇i fp = 0.

5.4 Later improvements to the proof of sub-linear convergence of
stochastic RMSProp

After this thesis was defended and submitted, in collaboration with Jiayao Zhang (at UPenn) we
figured out that Theorem 5.3.1 also holds for an oracle which is not only less constrained than the one
given in Definition 19 but also for which corresponding distributions (even certain heavy-tailed ones)
for the stochastic gradient can be easily instantiated. This improved result, which we now record here
as Theorem 5.4.3, follows from essentially the same proof as given for Theorem 5.3.1.

Definition 21 ((α, β, ξ, X)-distributed random variable.). Given X ∈ R, α ∈ R+, β ∈ R+, ξ ∈ R+, we
say that a real valued random variable g is (α, β, ξ, X)-distributed if it satisfies the following three
conditions simultaneously,

• E [g] = X,

• E[|g|
√︁

g2 + ξ] ≤ α|X|,
• E

[︁
g2]︁ ≤ βX2.

Now we shall give a way to construct families of distributions which satisfy the above.

Lemma 5.4.1. Define σ > 0 such that |X| ≤ σ . Then for any β > 1, any random variable g s.t

E[g] = X, Var[g] = (β − 1)min{X2, 1},

is (α, β, ξ, X)-distributed for

α ≥
√︂

βξ + β2σ2, ξ ≥ 0.

It can be shown that arbitrary mixtures of distributions of the above kind also are of the type given in
Definition 21

89



Chapter 5. Understanding Adaptive Gradient Algorithms

Example 5.4.2. For example, we may fix some parameter β > 1 and take

g ∼ N
(︂

X,
√︁

β − 1 min{|X|, 1}
)︂

,

or
g ∼ Laplace(X,

√︂
(β − 1)/2 min{|X|, 1}).

Then this oracle satisfies the condition given in Definition 21 with α ≥
√︁

β(βX2 + ξ), ξ ≥ 0.

Note in particular, that we may take g to be distributed as a mixture of the Gaussians or the Laplacians
as specified in the examples above. Now we use the above definition to state the following theorem
about sub-linear convergence of stochastic RMSProp.

Theorem 5.4.3. Fast Stochastic RMSProp. Suppose f : Rd → R is L−smooth and ∃ σ > 0 such that
|∇i f (x)| ≤ σ for all x ∈ Rd and i ∈ {1, . . . , d}. Now suppose that we execute the RMSProp algorithm
as defined in Algorithm 6 with query access to a gradient oracle of f which for every coordinate i
satisfies the condition given in Definition 21 with X = ∇i f and ξ large enough. Then there exists a
choice of constant step size s for the algorithm such that with T = O(1/ϵ2) steps we have,

E

[︃
min

t=1,...,T
∥∇ f (xt)∥2

]︃
= O(ϵ2).

5.5 Sufficient conditions for convergence to criticality for non-convex
deterministic adaptive gradient algorithms

We note that there are important motivations to study the behavior of neural net training algorithms
in the deterministic setting because of use cases where the amount of noise is controlled during opti-
mization, either by using larger batches (Martens and Grosse, 2015; De et al., 2017; Babanezhad et al.,
2015) or by employing variance-reducing techniques (Johnson and Zhang, 2013; Defazio, Bach, and
Lacoste-Julien, 2014). Inspired by these we also investigate the full-batch RMSProp and ADAM in
our controlled autoencoder experiments in Section 5.7.3. Towards that we will now demonstrate that
such oracle conditions as in the previous section are not necessary to guarantee convergence of the
deterministic RMSProp.

Theorem 5.5.1 (Convergence of deterministic RMSProp - the version with standard speeds (Proof
in Appendix 5.B)). Let f : Rd → R be L−smooth and let σ < ∞ be an upperbound on the norm of the
gradient of f . Assume also that f has a minimizer, i.e., there exists x∗ such that f (x∗) = minx∈Rd f (x).
Then the following holds for Algorithm 6 when gt = ∇ f (xt) ∀t,

For any ϵ, ξ > 0, using a constant step length of αt = α = (1−β2)ξ

L
√

σ2+ξ
for t = 1, 2, ..., guarantees that

∥∇ f (xt)∥ ≤ ϵ for some t ≤ 1
ϵ2 × 2L(σ2+ξ)( f (x1)− f (x∗))

(1−β2)ξ
, where x1 is the first iterate of the algorithm.

One might wonder if the ξ parameter introduced in all the algorithms above is necessary to get
convergence guarantees for RMSProp. Towards that in the following theorem we show convergence
of another variant of deterministic RMSProp which does not use the ξ parameter and instead uses
other assumptions on the objective function and step size modulation. But these tweaks to eliminate
the need of ξ come at the cost of the convergence rates getting weaker.

Theorem 5.5.2 (Convergence of deterministic RMSProp - the version with no ξ shift (Proof in
Appendix 5.C)). Let f : Rd → R be L−smooth and let σ < ∞ be an upperbound on the norm of the
gradient of f . Assume also that f has a minimizer, i.e., there exists x∗ such that f (x∗) = minx∈Rd f (x),
and the function f be bounded from above and below by constants Bℓ and Bu as Bl ≤ f (x) ≤ Bu for
all x ∈ Rd. Then for ξ = 0 and any ϵ > 0, ∃ T = O( 1

ϵ4 ) s.t. the Algorithm 6 when gt = ∇ f (xt) ∀t is
guaranteed to reach a t-th iterate s.t. 1 ≤ t ≤ T and ∥∇ f (xt)∥ ≤ ϵ.
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5.6. The Experimental setup

Next we analyze deterministic ADAM albeit in the small β1 regime. We note that a small β1 does
not cut-off contributions to the update direction from gradients in the arbitrarily far past (which are
typically significantly large), and neither does it affect the non-triviality of the pre-conditioner which
does not depend on β1 at all.

Theorem 5.5.3. Deterministic ADAM converges to criticality (Proof in subsection 5.8.2) Let f :
Rd → R be L−smooth and let σ < ∞ be an upperbound on the norm of the gradient of f . Assume
also that f has a minimizer, i.e., there exists x∗ such that f (x∗) = minx∈Rd f (x). Then the following
holds for Algorithm 7 when gt = ∇ f (xt) ∀t,

• For any ϵ > 0, β1 < ϵ
ϵ+σ and ξ > σ2β1

−β1σ+ϵ(1−β1)
, there exist step sizes αt > 0, t = 1, 2, . . . and a

natural number T (depending on β1, ξ) such that ∥∇ f (xt)∥ ≤ ϵ for some t ≤ T.

• In particular if one sets β1 = ϵ
ϵ+2σ , ξ = 2σ, and αt =

∥gt∥2

L(1−βt
1)

2
4ϵ

3(ϵ+2σ)2 , then T can be taken to be

9Lσ2

ϵ6 [ f (x2)− f (x∗)], where x2 is the second iterate of the algorithm.

In other words in T iterates the lowest norm of the gradient encountered by deterministic/“full-

batch” ADAM for smooth non-convex objectives falls at least as fast as O
(︂

1

T
1
6

)︂
Our motivations towards the above theorem were primarily rooted in trying to understand the sit-
uations where ADAM as an offline optimizer can converge at all (given the negative results about
ADAM in the online setting as in Reddi, Kale, and Kumar, 2018). But we point out that it remains
open to tighten the analysis of deterministic ADAM and obtain faster rates than what we have shown
in the theorem above and also to be able to characterize conditions when stochastic ADAM can con-
verge.

Remark. It is often believed that ADAM gains over RMSProp because of its so-called “bias correction
term” which refers to the step length of ADAM having an iteration dependence of the following

form,
√︂

1 − βt
2/(1 − βt

1). As a key success of the above theorem, we note that the 1/(1 − βt
1) term of

this “bias correction term” naturally comes out from theory!

5.6 The Experimental setup

For testing the empirical performance of ADAM and RMSProp, we perform experiments on fully
connected autoencoders using ReLU activations and shared weights and on CIFAR-10 using VGG-9,
a convolutional neural network. The experiment on VGG-9 has been described in subsection 5.7.5.

To the best of our knowledge there have been very few comparisons of ADAM and RMSProp with
other methods on a regression setting and that is one of the main gaps in the literature that we aim to
fix by our study here. In a way this also builds on our previous work (Rangamani et al., 2017) (Chap-
ter 4) where we had undertaken a theoretical analysis of autoencoders and in their experiments and
had found RMSProp to have good reconstruction error for MNIST when used on even just 2 layer
ReLU autoencoders.

To keep our experiments as controlled as possible, we make all layers in a network have the same
width (which we denote as h). Thus, we fix the dimensions of the weight matrices of the depth
2ℓ− 1, Rd → Rd autoencoders (as defined in Chapter 1) as : W1 ∈ Rh×d, Wi ∈ Rh×h, i = 2, . . . , ℓ. This
allowed us to study the effect of increasing depth ℓ or width h without having to deal with added
confounding factors. For all experiments, we use the standard “Glorot initialization” for the weights
(Glorot and Bengio, 2010), where each element in the weight matrix is initialized by sampling from a
uniform distribution with [−limit, limit], limit =

√︁
6/(fanin + fanout), where fanin denotes the num-

ber of input units in the weight matrix, and fanout denotes the number of output units in the weight
matrix. All bias vectors were initialized to zero. No regularization was used.
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We performed autoencoder experiments on the MNIST dataset for various network sizes (i.e., dif-
ferent values of ℓ and h). We implemented all experiments using TensorFlow (Abadi et al., 2016)
using an NVIDIA GeForce GTX 1080 Ti graphics card. We compared the performance of ADAM and
RMSProp with Nesterov’s Accelerated Gradient (NAG). All experiments were run for 105 iterations.
We tune over the hyper-parameters for each optimization algorithm using a grid search as described
in Appendix 5.D.

To pick the best set of hyper-parameters, we choose the ones corresponding to the lowest loss on
the training set at the end of 105 iterations. Further, to cut down on the computation time so that we
can test a number of different neural net architectures, we crop the MNIST image from 28 × 28 down
to a 22 × 22 image by removing 3 pixels from each side (almost all of which is whitespace).

Full-batch experiments We are interested in first comparing these algorithms in the full-batch set-
ting. To do this in a computationally feasible way, we consider a subset of the MNIST dataset (we
call this: mini-MNIST), which we build by extracting the first 5500 images in the training set and first
1000 images in the test set in MNIST. Thus, the training and testing datasets in mini-MNIST is 10%
of the size of the MNIST dataset. Thus the training set in mini-MNIST contains 5500 images, while
the test set contains 1000 images. This subset of the dataset is a fairly reasonable approximation of
the full MNIST dataset (i.e., contains roughly the same distribution of labels as in the full MNIST
dataset), and thus a legitimate dataset to optimize on.

Mini-batch experiments To test if our conclusions on the full-batch case extend to the mini-batch
case, we then perform the same experiments in a mini-batch setup where we fix the mini-batch size
at 100. For the mini-batch experiment, we consider the full training set of MNIST, instead of the
mini-MNIST dataset considered for the full-batch experiments and we also test on CIFAR-10 using
VGG-9, a convolutional neural network.

5.7 Experimental Results

5.7.1 RMSProp and ADAM are sensitive to choice of ξ

The ξ parameter is a feature of the default implementations of RMSProp and ADAM such as in
TensorFlow. Most interestingly this strictly positive parameter is crucial for our proofs. In this section
we present experimental evidence that attempts to clarify that this isn’t merely a theoretical artefact
but its value indeed has visible effect on the behaviours of these algorithms. We see in Figure 5.7.1
that on increasing the value of this fixed shift parameter ξ, ADAM in particular, is strongly helped
towards getting lower gradient norms and lower test losses though it can hurt its ability to get lower
training losses. The plots are shown for optimally tuned values for the other hyper-parameters.

FIGURE 5.7.1: Optimally tuned parameters for different ξ values. 1 hidden layer net-
work of 1000 nodes; Left: Loss on training set; Middle: Loss on test set; Right: Gradient

norm on training set
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5.7.2 Tracking λmin(Hessian) of the loss function

To check whether NAG, ADAM or RMSProp is capable of consistently moving from a “bad” sad-
dle point to a “good” saddle point region, we track the most negative eigenvalue of the Hessian
λmin(Hessian). Even for a very small neural network with around 105 parameters, it is still intractable
to store the full Hessian matrix in memory to compute the eigenvalues. Instead, we use the Scipy li-
brary function scipy.sparse.linalg.eigsh that can use a function that computes the matrix-vector
products to compute the eigenvalues of the matrix (Lehoucq, Sorensen, and Yang, 1998). Thus, for
finding the eigenvalues of the Hessian, it is sufficient to be able to do Hessian-vector products. This
can be done exactly in a fairly efficient way (Townsend, 2008).

We display a representative plot in Figure 5.7.2 which shows that NAG in particular has a distinct
ability to gradually, but consistently, keep increasing the minimum eigenvalue of the Hessian while
continuing to decrease the gradient norm. However unlike as in deeper autoencoders in this case
the gradient norms are consistently bigger for NAG, compared to RMSProp and ADAM. In contrast,
RSMProp and ADAM quickly get to a high value of the minimum eigenvalue and a small gradient
norm, but somewhat stagnate there. In short, the trend looks better for NAG, but in actual numbers
RMSProp and ADAM do better.

FIGURE 5.7.2: Tracking the smallest eigenvalue of the Hessian on a 1 hidden layer
network of size 300. Left: Minimum Hessian eigenvalue. Right: Gradient norm on

training set.

5.7.3 Comparing performance in the full-batch setting

In Figure 5.7.3, we show how the training loss, test loss and gradient norms vary through the itera-
tions for RMSProp, ADAM (at β1 = 0.9 and 0.99) and NAG (at µ = 0.9 and 0.99) on a 3 hidden layer
autoencoder with 1000 nodes in each hidden layer trained on mini-MNIST. Appendix A and B have
more such comparisons for various neural net architectures with varying depth and width and input
image sizes, where the following qualitative results also extend.

Conclusions from the full-batch experiments of training autoencoders on mini-MNIST

FIGURE 5.7.3: Full-batch experiments on a 3 hidden layer network with 1000 nodes in
each layer; Left: Loss on training set; Middle: Loss on test set; Right: Gradient norm on

training set
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FIGURE 5.7.4: Mini-batch experiments on a network with 5 hidden layers of 1000 nodes
each; Left: Loss on training set; Middle: Loss on test set; Right: Gradient norm on train-

ing set

• Pushing β1 closer to 1 significantly helps ADAM in getting lower training and test losses and
at these values of β1, it has better performance on these metrics than all the other algorithms.
One sees cases like the one displayed in Figure 5.7.3 where ADAM at β1 = 0.9 was getting
comparable or slightly worse test and training errors than NAG. But once β1 gets closer to 1,
ADAM’s performance sharply improves and gets better than other algorithms.

• Increasing momentum helps NAG get lower gradient norms though on larger nets it might hurt
its training or test performance. NAG does seem to get the lowest gradient norms compared to
the other algorithms, except for single hidden layer networks like in Figure 5.7.2.

5.7.4 Corroborating the full-batch behaviors in the mini-batch setting

In Figure 5.7.4, we show how training loss, test loss and gradient norms vary when using mini-
batches of size 100, on a 5 hidden layer autoencoder with 1000 nodes in each hidden layer trained on
the full MNIST dataset. The same phenomenon as here has been demonstrated in more such mini-
batch comparisons on autoencoder architectures with varying depths and widths in Appendix C and
on VGG-9 with CIFAR-10 in the next subsection 5.7.5.

Conclusions from the mini-batch experiments of training autoencoders on the full MNIST dataset:

• Mini-batching does seem to help NAG do better than ADAM on small nets. However, for
larger nets, the full-batch behavior continues, i.e., when ADAM’s momentum parameter β1 is
pushed closer to 1, it gets better generalization (significantly lower test losses) than NAG at any
momentum tested.

• In general, for all metrics (test loss, training loss and gradient norm reduction) both ADAM as
well as NAG seem to improve in performance when their momentum parameter (µ for NAG
and β1 for ADAM) is pushed closer to 1. This effect, which was present in the full-batch setting,
seems to get more pronounced here.

• As in the full-batch experiments, NAG continues to have the best ability to reduce gradient
norms while for larger enough nets, ADAM at large momentum continues to have the best
training error.

5.7.5 Image Classification on Convolutional Neural Nets

To test whether these results might qualitatively hold for other datasets and models, we train an im-
age classifier on CIFAR-10 (containing 10 classes) using VGG-like convolutional neural networks
(Simonyan and Zisserman, 2014). In particular, we train VGG-9 on CIFAR-10, which contains 7 con-
volutional layers and 2 fully connected layers, a total of 9 layers. The convolutional layers contain
64, 64, 128, 128, 256, 256, 256 filters each of size 3 × 3, respectively. We use batch normalization (Ioffe
and Szegedy, 2015) and ReLU activations after each convolutional layer, and the first fully connected
layer. Table 5.7.1 contains more details of the VGG-9 architecture. We use minibatches of size 100,
and weight decay of 10−5. We use fixed step sizes, and all hyperparameters were tuned as indicated
in Section 5.D.
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(A) Training loss (B) Test set accuracy

FIGURE 5.7.5: Mini-batch image classification experiments with CIFAR-10 using VGG-
9

We present results in Figure 5.7.5. As before, we see that this task is another example where tun-
ing the momentum parameter (β1) of ADAM helps. While attaining approximately the same loss
value, ADAM with β1 = 0.99 generalizes as good as NAG and better than when β1 = 0.9. Thus
tuning β1 of ADAM helped in closing the generalization gap with NAG.

TABLE 5.7.1: VGG-9 on CIFAR-10.

layer type kernel size input size output size
Conv 1 3 × 3 3 × 32 × 32 64 × 32 × 32
Conv 2 3 × 3 64 × 32 × 32 64 × 32 × 32
Max Pooling 2 × 2 64 × 32 × 32 64 × 16 × 16
Conv 3 3 × 3 64 × 16 × 16 128 × 16 × 16
Conv 4 3 × 3 128 × 16 × 16 128 × 16 × 16
Max Pooling 2 × 2 128 × 16 × 16 128 × 8 × 8
Conv 5 3 × 3 128 × 8 × 8 256 × 8 × 8
Conv 6 3 × 3 256 × 8 × 8 256 × 8 × 8
Conv 7 3 × 3 256 × 8 × 8 256 × 8 × 8
Max Pooling 2 × 2 256 × 8 × 8 256 × 4 × 4
Linear 1 × 1 1 × 4096 1 × 256
Linear 1 × 1 1 × 256 1 × 10
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5.8 Proofs of convergence of (stochastic) RMSProp and ADAM

5.8.1 Fast convergence of stochastic RMSProp with “Over Parameterization” (Proof
of Theorem 5.3.1)

Proof. By L−smoothness of the objective we have the following relationship between the values at
consecutive updates,

f (xt+1) ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2 (5.1)

≤ f (xt) +
d

∑
i=1

∇i f (xt)(xt+1 − xt)i +
L
2

d

∑
i=1

(xt+1 − xt)
2
i (5.2)

In the last step above we substitute the update rule for the ith−coordinate of xt as, xt+1,i = xt,i −
αtgt,i√vt,i

to get,

f (xt+1) ≤ f (xt)− αt

d

∑
i=1

∇i f (xt)
gt,i√vt,i

+
Lα2

t
2

d

∑
i=1

g2
t,i

(
√vt,i)2

≤ f (xt)− αt

d

∑
i=1

∇i f (xt)

(︄
gt,i√vt,i

−
gt,i√︁

β2vt−1,i
+

gt,i√︁
β2vt−1,i

)︄

+
Lα2

t
2

d

∑
i=1

g2
t,i

vt,i

Now recall that E[gt | {xi}i=1,...,t] = ∇ f (xt). We substitute this in the above to get,

E[ f (xt+1) | {xi}i=1,...,t]

≤ f (xt)− αt

d

∑
i=1

∇i f (xt)
(︂ ∇i f (xt)√︁

β2vt−1,i
+ E

[︄
gt,i√vt,i

−
gt,i√︁

β2vt−1,i
| {xi}i=1,...,t

]︄ )︂
(5.3)

+
Lα2

t
2

d

∑
i=1

E

[︄
g2

t,i

vt,i
| {xi}i=1,...,t

]︄

≤ f (xt)− αt

d

∑
i=1

(∇i f (xt))2√︁
β2vt−1,i

+ αt

d

∑
i=1

|∇i f (xt)|
⃓⃓⃓⃓
⃓E
[︄

gt,i√vt,i
−

gt,i√︁
β2vt−1,i

| {xi}i=1,...,t

]︄⃓⃓⃓⃓
⃓

+
Lα2

t
2

d

∑
i=1

E

[︄
g2

t,i

vt,i
| {xi}i=1,...,t

]︄
(5.4)

Now observe that,

gt,i√vt,i
−

gt,i√︁
β2vt−1,i

≤ |gt,i|
⃓⃓⃓⃓
⃓ 1√vt,i

− 1√︁
β2vt−1,i

⃓⃓⃓⃓
⃓

≤
⃓⃓⃓⃓
⃓ gt,i√vt,i

√︁
β2vt−1,i

⃓⃓⃓⃓
⃓ |√︂β2vt−1,i −

√
vt,i|

≤
⃓⃓⃓⃓
⃓ gt,i√vt,i

√︁
β2vt−1,i

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓ β2vt−1,i − vt,i√︁

β2vt−1,i +
√vt,i

⃓⃓⃓⃓
⃓
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From the algorithm we have, vt,i = β2vt−1,i +(1− β2)(g2
t,i + ξ). We substitute this into the numerator

and the denominator of the second factor of the RHS above to get,

gt,i√vt,i
−

gt,i√︁
β2vt−1,i

≤
⃓⃓⃓⃓
⃓ gt,i√vt,i

√︁
β2vt−1,i

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓⃓ (1 − β2)(g2

t,i + ξ)√︁
β2vt−1,i +

√︂
β2vt−1,i + (1 − β2)(g2

t,i + ξ)

⃓⃓⃓⃓
⃓⃓

≤
⃓⃓⃓⃓
⃓ gt,i√vt,i

√︁
β2vt−1,i

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓⃓ (1 − β2)(g2

t,i + ξ)√︂
(1 − β2)(g2

t,i + ξ)

⃓⃓⃓⃓
⃓⃓ = √︁1 − β2

⃓⃓⃓⃓
⃓⃓ gt,i

√︂
g2

t,i + ξ
√vt,i

√︁
β2vt−1,i

⃓⃓⃓⃓
⃓⃓

Now we substitute the above into equation 5.3 to get,

E[ f (xt+1) | {xi}i=1,...,t]

≤ f (xt)− αt

d

∑
i=1

(∇i f (xt))2√︁
β2vt−1,i

(5.5)

+ αt
√︁

1 − β2

d

∑
i=1

|∇i f (xt)|E
⎡⎣⃓⃓⃓⃓⃓⃓ gt,i

√︂
g2

t,i + ξ
√vt,i

√︁
β2vt−1,i

⃓⃓⃓⃓
⃓⃓ | {xi}i=1,...,t

⎤⎦
+

Lα2
t

2

d

∑
i=1

E

[︄
g2

t,i

vt,i
| {xi}i=1,...,t

]︄
(5.6)

Now by definition we have, vt,i ≥ β2vt−1,i and the definition of σ we infer from the above,

E[ f (xt+1) | {xi}i=1,...,t] ≤ f (xt)− αt

d

∑
i=1

(∇i f (xt))2√︁
β2vt−1,i

+ σαt
√︁

1 − β2

d

∑
i=1

E

⎡⎣⃓⃓⃓⃓⃓⃓gt,i

√︂
g2

t,i + ξ

β2vt−1,i

⃓⃓⃓⃓
⃓⃓ | {xi}i=1,...,t

⎤⎦ (5.7)

+
Lα2

t
2

d

∑
i=1

E

[︄
g2

t,i

β2vt−1,i
| {xi}i=1,...,t

]︄
(5.8)

We have, vt = (1 − β2)∑t
k=1 βt−k

2 (g2
k + ξ) This implies, vt,i ≥ (1 − βt

2)ξ ≥ (1 − β2)ξ. The last
inequality follows because we have, β2 ∈ (0, 1) and t ≥ 1 Substituting this in the above (along with
the fact that vt,i > 0 ) we get,
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E[ f (xt+1) | {xj}j=2,...,t]

≤ f (xt) +
d

∑
i=1

(︂
− αt

(∇i f (xt))2√︁
β2vt−1,i

+ σαt
√︁

1 − β2

E
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β2σ
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(5.9)

Now we note that,

E

[︄
d

∑
i=1

√︂
g4

t,i + ξ|gt,i|2 | {xj}j=2,...,t

]︄

≤ E
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Now we invoke the the property of the oracle given in definition 19 to say that,

E
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√︂
g4
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4
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Thus substituting the above back into equation 5.9 we get,

E[ f (xt+1) | {xj}j=2,...,t] ≤ f (xt)

+
d

∑
i=1

{︂
− αt√︁

β2σ
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Further we make the optimal choice of αt = ξβ2(1−β2)
cL

(︂
1√
β2σ

− cσ

ξβ2
√

1−β2

)︂
(which is positive by

assumptions) and we get,
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E[ f (xt+1) | {xj}j=2,...,t] ≤ f (xt)−
1

2cL

(︂ cσ√︁
β2ξ

−
√︃

ξ(1 − β2)

σ

)︂2
∥∇ f (xt)∥2

Taking expectation and rearranging we get,

E[ min
t=1,...,T

∥∇ f (xt)∥2] ≤ 1
T

T

∑
t=1

E[∥∇ f (xt)∥2] ≤ f (x1)− f∗
T

2cL

(︂
cσ√
β2ξ

−
√︂

ξ(1−β2)
σ

)︂2

From here the result follows.

5.8.2 Proving ADAM (Proof of Theorem 5.5.3)

Proof. Let us assume to the contrary that ∥gt∥ > ϵ for all t = 1, 2, 3. . . .. We will show that this
assumption will lead to a contradiction. By L−smoothness of the objective we have the following
relationship between the values at consecutive updates,

f (xt+1) ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

Substituting the update rule using a dummy step length ηt > 0 we have,

f (xt+1) ≤ f (xt)− ηt⟨∇ f (xt),
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The RHS in equation 5.11 above is a quadratic in ηt with two roots: 0 and
⟨gt ,
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.

So the quadratic’s minimum value is at the midpoint of this interval, which gives us a candidate
tth−step length i.e
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1
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·
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. That is with step lengths

being this α∗t we have the following guarantee of decrease of function value between consecutive
steps,
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Now we separately lower bound the numerator and upper bound the denominator of the RHS above.

Upperbound on ∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥

We have, λmax
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V

1
2

t + diag(ξ1d)
)︂−1)︂

≤ 1
ξ+mini=1..d

√
(vt)i

Further we note that the recursion of vt can

be solved as, vt = (1− β2)∑t
k=1 βt−k

2 g2
k . Now we define, ϵt := mink=1,..,t,i=1,..,d(g2

k)i and this gives us,

λmax

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

≤ 1

ξ +
√︂
(1 − βt

2)ϵt

(5.15)

We solve the recursion for mt to get, mt = (1 − β1)∑t
k=1 βt−k

1 gk. Then by triangle inequality and
defining σt := maxi=1,..,t∥∇ f (xi)∥ we have, ∥mt∥ ≤ (1 − βt

1)σt. Thus combining this estimate of
∥mt∥ with equation 5.15 we have,

∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥ ≤ (1 − βt
1)σt

ξ +
√︂

ϵt(1 − βt
2)

≤ (1 − βt
1)σt

ξ
(5.16)

Lowerbound on ⟨gt,
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt⟩
To analyze this we define the following sequence of functions for each i = 0, 1, 2.., t

Qi = ⟨gt,
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mi⟩

This gives us the following on substituting the update rule for mt,

Qi − β1Qi−1 = ⟨gt,
(︂

V
1
2

t + diag(ξ1d)
)︂−1

(mi − β1mi−1)⟩

= (1 − β1)⟨gt,
(︂

V
1
2

t + diag(ξ1d)
)︂−1

gi⟩

At i = t we have, Qt − β1Qt−1 ≥ (1 − β1)∥gt∥2λmin

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

Lets define, σt−1 := maxi=1,..,t−1∥∇ f (xi)∥ and this gives us for i ∈ {1, .., t − 1},

Qi − β1Qi−1 ≥ −(1 − β1)∥gt∥σt−1λmax

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

We note the following identity,

Qt − βt
1Q0 = (Qt − β1Qt−1) + β1(Qt−1 − β1Qt−2) + β2

1(Qt−2 − β1Qt−3) + ..

+ βt−1
1 (Q1 − β1Q0)

Now we use the lowerbounds proven on Qi − β1Qi−1 for i ∈ {1, .., t − 1} and Qt − β1Qt−1 to lower-
bound the above sum as,
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Qt − βt
1Q0 ≥ (1 − β1)∥gt∥2λmin

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

− (1 − β1)∥gt∥σt−1λmax

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂ t−1

∑
j=1

β
j
1

≥ (1 − β1)∥gt∥2λmin

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

− (β1 − βt
1)∥gt∥σt−1λmax

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

(5.17)

We can evaluate the following lowerbound,

λmin

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

≥ 1
ξ +

√︁
maxi=1,..,d(vt)i

Next we remember that the recursion of vt can be solved as, vt = (1− β2)∑t
k=1 βt−k

2 g2
k and we define,

σt := maxi=1,..,t∥∇ f (xi)∥ to get,

λmin

(︂(︂
V

1
2

t + diag(ξ1d)
)︂−1)︂

≥ 1

ξ +
√︂
(1 − βt

2)σ
2
t

(5.18)

Now we combine the above and equation 5.15 and the known value of Q0 = 0 (from definition and
initial conditions) to get from the equation 5.17,

Qt ≥ −(β1 − βt
1)∥gt∥σt−1

1

ξ +
√︂
(1 − βt

2)ϵt

+ (1 − β1)∥gt∥2 1

ξ +
√︂
(1 − βt

2)σ
2
t

≥ ∥gt∥2

⎛⎝ (1 − β1)

ξ + σ
√︂
(1 − βt

2)
− (β1 − βt

1)σ

ξ∥gt∥

⎞⎠ (5.19)

In the above inequalities we have set ϵt = 0 and we have set, σt = σt−1 = σ. Now we examine the
following part of the lowerbound proven above,

(1 − β1)

ξ +
√︂
(1 − βt

2)σ
2
− (β1 − βt

1)σ

ξ∥gt∥

=
ξ∥gt∥(1 − β1)− σ(β1 − βt

1)(ξ + σ
√︂
(1 − βt

2))

ξ∥gt∥(ξ + σ
√︂
(1 − βt

2))

= σ(β1 − βt
1)

ξ
(︂ ∥gt∥(1−β1)

σ(β1−βt
1)

− 1
)︂
− σ

√︂
(1 − βt

2)

ξ∥gt∥(ξ + σ
√︂
(1 − βt

2))

= σ(β1 − βt
1)

(︄
∥gt∥(1 − β1)

σ(β1 − βt
1)

− 1

)︄ ξ −
⎛⎝ σ

√
(1−βt

2)

−1+ (1−β1)∥gt∥
(β1−βt

1)σ

⎞⎠
ξ∥gt∥(ξ + σ

√︂
(1 − βt

2))
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Now we remember the assumption that we are working under i.e ∥gt∥ > ϵ. Also by definition

0 < β1 < 1 and hence we have 0 < β1 − βt
1 < β1. This implies, (1−β1)∥gt∥

(β1−βt
1)σ

> (1−β1)ϵ
β1σ > 1 where the

last inequality follows because of our choice of ϵ as stated in the theorem statement. This allows us
to define a constant, ϵ(1−β1)

β1σ − 1 := θ1 > 0 s.t (1−β1)∥gt∥
(β1−βt

1)σ
− 1 > θ1 Similarly our definition of ξ allows

us to define a constant θ2 > 0 to get,

⎛⎜⎝ σ
√︂
(1 − βt

2)

−1 + (1−β1)∥gt∥
(β1−βt

1)σ

⎞⎟⎠ <
σ

θ1
= ξ − θ2

Putting the above back into the lowerbound for Qt in equation 5.19 we have,

Qt ≥ ∥gt∥2

(︄
σ(β1 − β2

1)θ1θ2

ξσ(ξ + σ)

)︄
(5.20)

Now we substitute the above and equation 5.16 into equation 5.14 to get,

f (xt+1)− f (xt) ≤ − 1
2L

·
(⟨gt,

(︂
V

1
2

t + diag(ξ1d)
)︂−1

mt⟩)2

∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥2

≤ − 1
2L

Q2
t

∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥2

≤ − 1
2L

∥gt∥4
(︃

(β1−β2
1)θ1θ2

ξ(ξ+σ)

)︃2

(︂
(1−βt

1)σ
ξ

)︂2

≤ −∥gt∥4

2L

(︄
(β1 − β2

1)
2θ2

1θ2
2

(ξ + σ)2(1 − βt
1)

2σ2

)︄
(5.21)

Thus we get from the above,

(︄
(β1 − β2

1)
2θ2

1θ2
2

2L(ξ + σ)2(1 − βt
1)

2σ2

)︄
∥∇ f (xt)∥4 ≤ [ f (xt)− f (xt+1)]

=⇒
T

∑
t=2

(︄
(β1 − β2

1)
2θ2

1θ2
2

2L(ξ + σ)2σ2

)︄
∥∇ f (xt)∥4 ≤ [ f (x2)− f (xT+1)]

=⇒ min
t=2,..,T

∥∇ f (xt)∥4 ≤ 2L(ξ + σ)2σ2

T(β1 − β2
1)

2θ2
1θ2

2
[ f (x2)− f (x∗)]

Observe that if, T ≥ 2Lσ2(ξ+σ)2

2ϵ4(β1−β2
1)

2θ2
1θ2

2
[ f (x2)− f (x∗)] then the RHS of the inequality above is less than

or equal to ϵ4 and this would contradict the assumption that ∥∇ f (xt)∥ > ϵ for all t = 1, 2, . . ..

As a consequence we have proven the first part of the theorem which guarantees the existence of
positive step lengths, αt s.t ADAM finds an approximately critical point in finite time.

Now choose θ1 = 1 i.e ϵ
2 = β1σ

1−β1
i.e β1 = ϵ

ϵ+2σ =⇒ β1(1 − β1) = ϵ
ϵ+2σ (1 − ϵ

ϵ+2σ ) = 2σϵ
(ϵ+2σ)2 . This

also gives a easier-to-read condition on ξ in terms of these parameters i.e ξ > σ. Now choose ξ = 2σ
i.e θ2 = σ and making these substitutions gives us,
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T ≥ 18Lσ4

2ϵ4
(︂

2σϵ
(ϵ+2σ)

)︂2
σ2

[ f (x2)− f (x∗)] ≥
18L

8ϵ6
(︂

1
ϵ+2σ

)︂2 [ f (x2)− f (x∗)]

≥ 9Lσ2

ϵ6 [ f (x2)− f (x∗)]

We substitute these choices in the step length found earlier to get,

α∗t =
1
L
·
⟨gt,

(︂
V

1
2

t + diag(ξ1d)
)︂−1

mt⟩

∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥2
=

1
L
· Qt

∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥2

≥ 1
L

∥gt∥2
(︃

σ2(β1−β2
1)

ξσ(ξ+σ)

)︃
(︂
(1−βt

1)σ
ξ

)︂2 =
∥gt∥2

L(1 − βt
1)

2
4ϵ

3(ϵ + 2σ)2 := αt

In the theorem statement we choose to call as the final αt the lowerbound proven above. We check
below that this smaller value of αt still guarantees a decrease in the function value that is sufficient
for the statement of the theorem to hold.

A consistency check! Let us substitute the above final value of the step length αt =
1
L

∥gt∥2
(︃

σ2(β1−β2
1)

ξσ(ξ+σ)

)︃
(︃

(1−βt
1)σ

ξ

)︃2 =

ξ
L(1−βt

1)
2 ∥gt∥2

(︃
(β1−β2

1)
σ(ξ+σ)

)︃
, the bound in equation 5.16 (with σt replaced by σ), and the bound in equa-

tion 5.20 (at the chosen values of θ1 = 1 and θ2 = σ) in the original equation 5.14 to measure the
decrease in the function value between consecutive steps,

f (xt+1)− f (xt)

≤ αt

(︃
−⟨gt,

(︂
V

1
2

t + diag(ξ1d)
)︂−1

mt⟩+
Lαt

2
∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥2
)︃

≤ αt

(︃
−Qt +

Lαt

2
∥
(︂

V
1
2

t + diag(ξ1d)
)︂−1

mt∥2
)︃

≤ ξ

L(1 − βt
1)

2 ∥gt∥2

(︄
(β1 − β2

1)

σ(ξ + σ)

)︄(︄
−∥gt∥2

(︄
σ(β1 − β2

1)θ1θ2

ξσ(ξ + σ)

)︄)︄

+
L
2

(︄
ξ

L(1 − βt
1)

2 ∥gt∥2

(︄
(β1 − β2

1)

σ(ξ + σ)

)︄
(1 − βt

1)σ

ξ

)︄2

The RHS above can be simplified to be shown to be equal to the RHS in equation 5.21 at the same
values of θ1 and θ2 as used above. And we recall that the bound on the running time was derived
from this equation 5.21.
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5.9 Conclusion

To the best of our knowledge, we present the first theoretical guarantees of convergence to criticality
for the immensely popular algorithms RMSProp and ADAM in their most commonly used setting of
optimizing a non-convex objective.

By our experiments, we have sought to shed light on the important topic of the interplay between
adaptivity and momentum in training nets. By choosing to study textbook autoencoder architectures
where various parameters of the net can be changed controllably we highlight the following two
aspects that (a) the value of the gradient shifting hyperparameter ξ has a significant influence on
the performance of ADAM and RMSProp and (b) ADAM seems to perform particularly well (often
supersedes Nesterov accelerated gradient method) when its momentum parameter β1 is very close
to 1. On VGG-9 with CIFAR-10 and for the task of training autoencoders on MNIST we have verified
these conclusions across different widths and depths of nets as well as in the full-batch and the mini-
batch setting (with large nets) and also under compression of the input/output image size.

Curiously enough, this regime of β1 being close to 1 is currently not within the reach of our proof tech-
niques of showing convergence for ADAM. Our experiments give strong reasons to try to advance
theory in this direction in future work. Though we note that it is still open to find a characterization
of the class of objectives for which ADAM and RMSProp in their standard stochastic forms converge
to criticality using just a bounded moment and unbiased gradient estimating oracle. Hence theo-
retically we are still far from being able to explain the unique advantages of the standard versions
of RMSProp or ADAM, which in turn we have thoroughly demonstrated in the experiments in this
work.
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Appendix To Chapter 5

5.A Proving stochastic RMSProp (Proof of Theorem 5.3.2)

Now we give the proof of Theorem 5.3.2.

Proof. We define σt := maxk=1,..,t ∥∇ fik (xk)∥ and we solve the recursion for vt as, vt = (1− β2)∑t
k=1 βt−k

2 (g2
k +

ξ). This lets us write the following bounds,

λmin(V
− 1

2
t ) ≥ 1√︁

maxi=1,..,d(vt)i
≥ 1√︂

maxi=1,..,d((1 − β2)∑t
k=1 βt−k

2 (g2
k + ξ1d)i)

≥ 1√︂
1 − βt

2

√︂
σ2

t + ξ

Now we define, ϵt := mink=1,..,t,i=1,..,d(∇ fik (xk))
2
i and this lets us get the following bounds,

λmax(V
− 1

2
t ) ≤ 1

mini=1,..,d(
√︁
(vt)i)

≤ 1√︂
(1 − βt

2)
√︁
(ξ + ϵt)

Now we invoke the bounded gradient assumption about the fi functions and replace in the above
equation the eigenvalue bounds of the pre-conditioner by worst-case estimates µmax and µmin defined
as,

λmin(V
− 1

2
t ) ≥ 1√︂

σ2
f + ξ

:= µmin

λmax(V
− 1

2
t ) ≤ 1√︁

(1 − β2)
√

ξ
:= µmax

Using the L-smoothness of f between consecutive iterates xt and xt+1 we have,

f (xt+1) ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

We note that the update step of stochastic RMSProp is xt+1 = xt − α(Vt)
− 1

2 gt where gt is the stochastic
gradient at iterate xt. Let Ht = {x1, x2, .., xt} be the set of random variables corresponding to the
first t iterates. The assumptions we have about the stochastic oracle give us the following relations,
E[gt | Ht] = ∇ f (xt) and E[∥gt∥2 | Ht] ≤ σ2

f . Now we can invoke these stochastic oracle’s properties
and take a conditional (on Ht) expectation over gt of the L−smoothness in equation to get,
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E[ f (xt+1) | Ht] ≤ f (xt)− αE
[︂
⟨∇ f (xt), (Vt)

− 1
2 gt⟩ | Ht

]︂
+

α2L
2

E
[︂
∥(Vt)

− 1
2 gt∥2 | Ht

]︂
≤ f (xt)− αE

[︂
⟨∇ f (xt), (Vt)

− 1
2 gt⟩ | Ht

]︂
+ µ2

max
α2L

2
E
[︂
∥gt∥2 | Ht

]︂
≤ f (xt)− αE

[︂
⟨∇ f (xt), (Vt)

− 1
2 gt⟩ | Ht

]︂
+ µ2

max

α2σ2
f L

2
(5.22)

We now separately analyze the middle term in the RHS above. In Lemma 5.A.1 below and we get,

E[⟨∇ f (xt), (Vt)
− 1

2 gt⟩ | Ht] ≥ µmin∥∇ f (xt)∥2

We substitute the above into equation 5.22 and take expectations over Ht to get,

E[ f (xt+1)− f (xt)] ≤ −αµminE[∥∇ f (xt)∥2] + µ2
max

α2σ2
f L

2

=⇒ E[∥∇ f (xt)∥2] ≤ 1
αµmin

E[ f (xt)− f (xt+1)] +
ασ2

f L

2
µ2

max
µmin

(5.23)

Doing the above replacements to upperbound the RHS of equation 5.23 and summing the inequation
over t = 1 to t = T and taking the average and replacing the LHS by a lowerbound of it, we get,

min
t=1...T

E[∥∇ f (xt)∥2] ≤ 1
αTµmin

E[ f (x1)− f (xT+1)] +
ασ2

f L

2
µ2

max
µmin

≤ 1
αTµmin

( f (x1)− f (x∗)) +
ασ2

f L

2
µ2

max
µmin

Replacing into the RHS above the optimal choice of,

α =
1√
T

√︄
2 ( f (x1)− f (x∗))

σ2
f Lµ2

max
=

1√
T

√︄
2ξ(1 − β2) ( f (x1)− f (x∗))

σ2
f L

we get,

min
t=1...T

E[∥∇ f (xt)∥2] ≤ 2

√︄
1

Tµmin
( f (x1)− f (x∗))×

Lσ2
f

2
µ2

max
µmin

=
1√
T

√︄
2Lσ2

f (σ
2
f + ξ) ( f (x1)− f (x∗))

(1 − β2)ξ

Thus stochastic RMSProp with the above step-length is guaranteed is reach ϵ criticality in number of

iterations given by, T ≤ 1
ϵ4

(︃
2Lσ2

f (σ
2
f +ξ)( f (x1)− f (x∗))
(1−β2)ξ

)︃

Lemma 5.A.1. At any time t, the following holds,

E[⟨∇ f (xt), V−1/2
t gt⟩ | Ht] ≥ µmin∥∇ f (xt)∥2

Proof.

E
[︂
⟨∇ f (xt), V−1/2

t gt⟩ | Ht

]︂
= E

[︄
d

∑
i=1

∇i f (xt)(V−1/2
t )ii(gt)i | Ht

]︄

=
d

∑
i=1

∇i f (xt)E
[︂
(V−1/2

t )ii(gt)i | Ht

]︂
(5.24)
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Now we introduce some new variables to make the analysis easier to present. Let api :=
[︁
∇ fp(xt)

]︁
i

where p indexes the training data set, p ∈ {1, . . . , k}. (conditioned on Ht, apis are constants) This
implies, ∇i f (xt) =

1
k ∑k

p=1 api We recall that E [(gt)i] = ∇i f (xt) where the expectation is taken over
the oracle call at the tth update step. Further our instantiation of the oracle is equivalent to doing the
uniformly at random sampling, (gt)i ∼ {api}p=1,...,k.

Given that we have, Vt = diag(vt) with vt = (1 − β2)∑t
k=1 βt−k

2 (g2
k + ξ1d) this implies, (V−1/2

t )ii =
1√

(1−β2)(gt)
2
i +di

where we have defined di := (1 − β2)ξ + (1 − β2)∑t−1
k=1 βt−k

2 ((gk)
2
i + ξ). (conditioned

on Ht, di is a constant) This leads to an explicit form of the needed expectation over the tth−oracle
call as,

E
[︂
(V−1/2

t )ii(gt)i | Ht

]︂
= E

[︂
(V−1/2

t )ii(gt)i | Ht

]︂
= E(gt)i∼{api}p=1,...,k

⎡⎣ (gt)i√︂
(1 − β2)(gt)2

i + di

| Ht

⎤⎦
=

1
k

k

∑
p=1

api√︂
(1 − β2)a2

pi + di

Substituting the above (and the definition of the constants api) back into equation 5.24 we have,

E
[︂
⟨∇ f (xt), V−1/2

t gt⟩ | Ht

]︂
=

d

∑
i=1

(︄
1
k

k

∑
p=1

api

)︄⎛⎝1
k

k

∑
p=1

api√︂
(1 − β2)a2

pi + di

⎞⎠
We define two vectors ai, hi ∈ Rk s.t (ai)p = api and (hi)p = 1√︂

(1−β2)a2
pi+di

Substituting this, the above expression can be written as,

E
[︂
⟨∇ f (xt), V−1/2

t gt⟩ | Ht

]︂
=

1
k2

d

∑
i=1

(︂
a⊤i 1k

)︂ (︂
h⊤

i ai

)︂
=

1
k2

d

∑
i=1

a⊤i
(︂

1kh⊤
i

)︂
ai (5.25)

Note that with this substitution, the RHS of the claimed lemma becomes,

µmin∥∇ f (xt)∥2 = µmin

d

∑
i=1

(︄
1
k

k

∑
p=1

∇p f (xt)

)︄2

=
µmin

k2

d

∑
i=1

(a⊤i 1k)
2

=
µmin

k2

d

∑
i=1

a⊤i 1k1⊤k ai

Therefore our claim is proved if we show that for all i,

1
k2 a⊤i

(︂
1kh⊤

i

)︂
ai −

µmin

k2 a⊤i 1k1⊤k ai ≥ 0

. This can be simplified as,

1
k2 a⊤i

(︂
1kh⊤

i

)︂
ai − µmin

1
k2 a⊤i 1k1⊤k ai =

1
k2 a⊤i

(︂
1k (hi − µmin1k)

⊤
)︂

ai
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To further simplify, we define qi ∈ Rk, (qi)p = (hi)p − µmin = 1√︂
(1−β2)a2

pi+di
− µmin. We therefore

need to show,

1
k2 a⊤i

(︂
1kq⊤

i

)︂
ai ≥ 0

We first bound di by recalling the definition of σf (from which it follows that a2
pi ≤ σ2

f ),

di ≤ (1 − β2)

[︄
ξ +

t−1

∑
k=1

βt−k
2 (σ2

f + ξ)

]︄
= (1 − β2)

[︄
ξ +

β2 − βt−1
2

1 − β2
(σ2

f + ξ)

]︄
≤ (1 − β2)ξ + (β2 − βt−1

2 )ξ + (β2 − βt−1
2 )σ2

f = (1 − βt−1
2 )ξ + (β2 − βt−1

2 )σ2
f

=⇒
√︂
(1 − β2)a2

pi + di ≤
√︂
(1 − β2)σ

2
f + (1 − βt−1

2 )ξ + (β2 − βt−1
2 )σ2

f

=
√︂
(1 − βt−1

2 )(σ2
f + ξ)

=⇒ −µmin +
1√︂

(1 − β2)a2
pi + di

≥ −µmin +
1√︂

(1 − βt−1
2 )(σ2

f + ξ)

= − 1√︂
σ2

f + ξ
+

1√︂
(1 − βt−1

2 )(σ2
f + ξ)

=⇒ −µmin +
1√︂

(1 − β2)a2
pi + di

≥ 0 (5.26)

The inequality follows since β2 ∈ (0, 1]

Putting this all together, we get,

(a⊤i 1k)(q
⊤
i ai)

=

(︄
k

∑
p=1

api

)︄⎛⎝ k

∑
p=1

⎡⎣−µminapi +
api√︂

(1 − β2)a2
pi + di

⎤⎦⎞⎠
=

k

∑
p,q=1

⎡⎣−µminapiaqi +
apiaqi√︂

(1 − β2)a2
pi + di

⎤⎦
=

k

∑
p,q=1

apiaqi

⎡⎣−µmin +
1√︂

(1 − β2)a2
pi + di

⎤⎦
Now our assumption that for all x, sign(∇ fp(x)) = sign(∇ fq(x)) for all p, q ∈ {1, . . . , k} leads to the

conclusion that the term apiaqi ≥ 0. And we had already shown in equation 5.26 that

[︄
−µmin + 1√︂

(1−β2)a2
pi+di

]︄
≥

0. Thus we have shown that (a⊤i 1k)(q⊤
i ai) ≥ 0 and this finishes the proof.
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5.B Proving deterministic RMSProp - the version with standard
speed (Proof of Theorem 5.5.1)

Proof. By the L−smoothness condition and the update rule in Algorithm 6 we have,https://www.overleaf.com/project/5f7fa365abb4250001d5d795

f (xt+1) ≤ f (xt)− αt⟨∇ f (xt), V− 1
2

t ∇ f (xt)⟩+ α2
t

L
2
∥V− 1

2
t ∇ f (xt)∥2

=⇒ f (xt+1)− f (xt) ≤ αt

(︃
Lαt

2
∥V− 1

2
t ∇ f (xt)∥2 − ⟨∇ f (xt), V− 1

2
t ∇ f (xt)⟩

)︃
(5.27)

For 0 < δ2
t < 1√

1−βt
2

√
σ2

t +ξ
we now show a strictly positive lowerbound on the following function,

2
L

⎛⎝ ⟨∇ f (xt), V− 1
2

t ∇ f (xt)⟩ − δ2
t ∥∇ f (xt)∥2

∥V− 1
2

t ∇ f (xt)∥2

⎞⎠ (5.28)

We define σt := maxi=1,..,t ∥∇ f (xi)∥ and we solve the recursion for vt as, vt = (1− β2)∑t
k=1 βt−k

2 (g2
k +

ξ). This lets us write the following bounds,

⟨∇ f (xt), V− 1
2

t ∇ f (xt)⟩ ≥ λmin(V
− 1

2
t )∥∇ f (xt)∥2 ≥ ∥∇ f (xt)∥2√︁

maxi=1,..,d(vt)i

≥ ∥∇ f (xt)∥2√︂
maxi=1,..,d((1 − β2)∑t

k=1 βt−k
2 (g2

k + ξ1d)i)

≥ ∥∇ f (xt)∥2√︂
1 − βt

2

√︂
σ2

t + ξ
(5.29)

Now we define, ϵt := mink=1,..,t,i=1,..,d(∇ f (xk))
2
i and this lets us get the following sequence of in-

equalities,

∥V− 1
2

t ∇ f (xt)∥2 ≤ λ2
max(V

− 1
2

t )∥∇ f (xt)∥2 ≤ ∥∇ f (xt)∥2

(mini=1,..,d(
√︁
(vt)i))2

(5.30)

≤ ∥∇ f (xt)∥2

(1 − βt
2)(ξ + ϵt)

(5.31)

So combining equations 5.30 and 5.29 into equation 5.28 and from the exit line in the loop we are
assured that ∥∇ f (xt)∥2 ̸= 0 and combining these we have,

2
L

⎛⎝−δ2
t ∥∇ f (xt)∥2 + ⟨∇ f (xt), V− 1

2
t ∇ f (xt)⟩

∥V− 1
2

t ∇ f (xt)∥2

⎞⎠
≥ 2

L

⎛⎝−δ2
t +

1√
1−βt

2

√
σ2

t +ξ

1
(1−βt

2)(ξ+ϵt)

⎞⎠
≥ 2(1 − βt

2)(ξ + ϵt)

L

⎛⎜⎝−δ2
t +

1√︂
1 − βt

2

√︂
σ2

t + ξ

⎞⎟⎠
Now our definition of δ2

t allows us to define a parameter 0 < βt := 1√
1−βt

2

√
σ2

t +ξ
− δ2

t and rewrite the

above equation as,
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2
L

⎛⎝−δ2
t ∥∇ f (xt)∥2 + ⟨∇ f (xt), V− 1

2
t ∇ f (xt)⟩

∥V− 1
2

t ∇ f (xt)∥2

⎞⎠ ≥ 2(1 − βt
2)(ξ + ϵt)βt

L
(5.32)

We can as well satisfy the conditions needed on the variables, βt and δt by choosing,

δ2
t =

1
2

min
t=1,...

1√︂
1 − βt

2

√︂
σ2

t + ξ
=

1
2

1√︁
σ2 + ξ

=: δ2

and

βt = min
t=1,..

1√︂
1 − βt

2

√︂
σ2

t + ξ
− δ2 =

1
2

1√︁
σ2 + ξ

Then the worst-case lowerbound in equation 5.32 becomes,

2
L

⎛⎝−δ2
t ∥∇ f (xt)∥2 + ⟨∇ f (xt), V− 1

2
t ∇ f (xt)⟩

∥V− 1
2

t ∇ f (xt)∥2

⎞⎠ ≥ 2(1 − β2)ξ

L
× 1

2
1√︁

σ2 + ξ

This now allows us to see that a constant step length αt = α > 0 can be defined as, α = (1−β2)ξ

L
√

σ2+ξ
and

this is such that the above equation can be written as, Lα
2 ∥V− 1

2
t ∇ f (xt)∥2 − ⟨∇ f (xt), V− 1

2
t ∇ f (xt)⟩ ≤

−δ2∥∇ f (xt)∥2 . This when substituted back into equation 5.27 we have,

f (xt+1)− f (xt) ≤ −δ2α∥∇ f (xt)∥2 = −δ2α∥∇ f (xt)∥2

This gives us,

∥∇ f (xt)∥2 ≤ 1
δ2α

[ f (xt)− f (xt+1)]

=⇒
T

∑
t=1

∥∇ f (xt)∥2 ≤ 1
δ2α

[ f (x1)− f (x∗)] (5.33)

=⇒ min
t=1,,.T

∥∇ f (xt)∥2 ≤ 1
Tδ2α

[ f (x1)− f (x∗)] (5.34)

Thus for any given ϵ > 0, T satisfying, 1
Tδ2α

[ f (x1)− f (x∗)] ≤ ϵ2 is a sufficient condition to ensure
that the algorithm finds a point xresult := argmint=1,,.T ∥∇ f (xt)∥2 with ∥∇ f (xresult)∥2 ≤ ϵ2.

Thus we have shown that using a constant step length of α = (1−β2)ξ

L
√

σ2+ξ
deterministic RMSProp can

find an ϵ−critical point in T = 1
ϵ2 × f (x1)− f (x∗)

δ2α
= 1

ϵ2 × 2L(σ2+ξ)( f (x1)− f (x∗))
(1−β2)ξ

steps.

5.C Proving deterministic RMSProp - the version with no added
shift (Proof of Theorem 5.5.2)

Proof. From the L−smoothness condition on f we have between consecutive iterates of the above
algorithm,
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f (xt+1) ≤ f (xt)− αt⟨∇ f (xt), V− 1
2

t ∇ f (xt)⟩

+
L
2

α2
t ∥V− 1

2
t ∇ f (xt)∥2 (5.35)

=⇒ ⟨∇ f (xt), V− 1
2

t ∇ f (xt)⟩ ≤
1
αt

( f (xt)− f (xt+1)) +
Lαt

2
∥V− 1

2
t ∇ f (xt)∥2 (5.36)

Now the recursion for vt can be solved to get, vt = (1 − β2)∑t
k=1 βt−k

2 g2
k . Then

∥V
1
2

t ∥ ≥ 1
maxi∈Support(vt)

√︁
(vt)i

=
1

maxi∈Support(vt)

√︂
(1 − β2)∑t

k=1 βt−k
2 (g2

k)i

=
1

maxi∈Support(vt) σ
√︂
(1 − β2)∑t

k=1 βt−k
2

=
1

σ
√︂
(1 − βt

2)

Substituting this in a lowerbound on the LHS of equation 5.35 we get,

1

σ
√︂
(1 − βt

2)
∥∇ f (xt)∥2 ≤ ⟨∇ f (xt), V− 1

2
t ∇ f (xt)⟩ ≤

1
αt

( f (xt)− f (xt+1))

+
Lαt

2
∥V− 1

2
t ∇ f (xt)∥2

Summing the above we get,

T

∑
t=1

1

σ
√︂
(1 − βt

2)
∥∇ f (xt)∥2 ≤

T

∑
t=1

1
αt

( f (xt)− f (xt+1)) +
T

∑
t=1

Lαt

2
∥V− 1

2
t ∇ f (xt)∥2 (5.37)

Now we substitute αt =
α√

t
and invoke the definition of Bℓ and Bu to write the first term on the RHS

of equation 5.37 as,

T

∑
t=1

1
αt
[ f (xt)− f (xt+1)] =

f (x1)

α
+

T

∑
t=1

(︃
f (xt+1)

αt+1
− f (xt+1)

αt

)︃
− f (xT+1)

αT+1

=
f (x1)

α
− f (xT+1)

αT+1
+

1
α

T

∑
t=1

f (xt+1)(
√

t + 1 −
√

t)

≤ Bu

α
− Bℓ

√
T + 1
α

+
Bu

α
(
√

T + 1 − 1)
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Now we bound the second term in the RHS of equation 5.37 as follows. Lets first define a function

P(T) as follows, P(T) = ∑T
t=1 αt∥V− 1

2
t ∇ f (xt)∥2 and that gives us,

P(T)− P(T − 1) = αT

d

∑
i=1

g2
T,i

vT,i
= αT

d

∑
i=1

g2
T,i

(1 − β2)∑T
k=1 βT−k

2 g2
k,i

=
αT

(1 − β2)

d

∑
i=1

g2
T,i

∑T
k=1 βT−k

2 g2
k,i

≤ dα

(1 − β2)
√

T

=⇒
T

∑
t=2

[P(t)− P(t − 1)] = P(T)− P(1)

≤ dα

(1 − β2)

T

∑
t=2

1√
t
≤ dα

2(1 − β2)
(
√

T − 2)

=⇒ P(T) ≤ P(1) +
dα

2(1 − β2)
(
√

T − 2)

So substituting the above two bounds back into the RHS of the above inequality 5.37and removing

the factor of
√︂

1 − βT
2 < 1 from the numerator, we can define a point xresult as follows,

∥∇ f (xresult)∥2 := argmin
t=1,..,T

∥∇ f (xt)∥2 ≤ 1
T

T

∑
t=1

∥∇ f (xt)∥2

≤ σ

T

(︄
Bu

α
− Bl

√
T + 1
α

+
Bu

α
(
√

T + 1 − 1)

+
L
2

[︃
P(1) +

dα

2(1 − β2)
(
√

T − 2)
]︃)︄

Thus it follows that for T = O( 1
ϵ4 ) the algorithm 6 is guaranteed to have found at least one point

xresult such that, ∥∇ f (xresult)∥2 ≤ ϵ2

5.D Hyperparameter Tuning

Here we describe how we tune the hyper-parameters of each optimization algorithm. NAG has two
hyper-parameters, the step size α and the momentum µ. The main hyper-parameters for RMSProp
are the step size α, the decay parameter β2 and the perturbation ξ. ADAM, in addition to the ones in
RMSProp, also has a momentum parameter β1. We vary the step-sizes of ADAM in the conventional

way of αt = α
√︂

1 − βt
2/(1 − βt

1).

For tuning the step size, we follow the same method used in Wilson et al., 2017. We start out with
a logarithmically-spaced grid of five step sizes. If the best performing parameter was at one of the
extremes of the grid, we tried new grid points so that the best performing parameters were at one of
the middle points in the grid. While it is computationally infeasible even with substantial resources
to follow a similarly rigorous tuning process for all other hyper-parameters, we do tune over them
somewhat as described below.

NAG The initial set of step sizes used for NAG were: {3e−3, 1e−3, 3e−4, 1e−4, 3e−5} We tune the
momentum parameter over values µ ∈ {0.9, 0.99}.

RMSProp The initial set of step sizes used were: {3e−4, 1e−4, 3e−5, 1e−5, 3e−6}. We tune over
β2 ∈ {0.9, 0.99}. We set the perturbation value ξ = 10−10, following the default values in TensorFlow,
except for the experiments in Section 5.7.1. In Section 5.7.1, we show the effect on convergence and
generalization properties of ADAM and RMSProp when changing this parameter ξ.
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Note that ADAM and RMSProp uses an accumulator for keeping track of decayed squared gradient
vt. For ADAM this is recommended to be initialized at v0 = 0. However, we found in the TensorFlow
implementation of RMSProp that it sets v0 = 1d. Instead of using this version of the algorithm, we
used a modified version where we set v0 = 0. We typically found setting v0 = 0 to lead to faster
convergence in our experiments.

ADAM The initial set of step sizes used were: {3e−4, 1e−4, 3e−5, 1e−5, 3e−6}. For ADAM, we
tune over β1 values of {0.9, 0.99}. For ADAM, We set β2 = 0.999 for all our experiments as is set as
the default in TensorFlow. Unless otherwise specified we use for the perturbation value ξ = 10−8 for
ADAM, following the default values in TensorFlow.

Contrary to what is the often used values of β1 for ADAM (usually set to 0.9), we found that we often
got better results on the autoencoder problem when setting β1 = 0.99.
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5.E Effect of the ξ parameter on adaptive gradient algorithms

In Figure 5.E.1, we show the same effect of changing ξ as in Section 5.7.1 on a 1 hidden layer network
of 1000 nodes, while keeping all other hyper parameters fixed (such as learning rate, β1, β2). These
other hyper-parameter values were fixed at the best values of these parameters for the default values
of ξ, i.e., ξ = 10−10 for RMSProp and ξ = 10−8 for ADAM.

(A) Loss on training set (B) Loss on test set (C) Gradient norm on training set

FIGURE 5.E.1: Fixed parameters with changing ξ values. 1 hidden layer network of
1000 nodes
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5.F Additional Experiments

A Additional full-batch experiments on 22 × 22 sized images

In Figures 5.F.1, 5.F.2 and 5.F.3, we show training loss, test loss and gradient norm results for a variety
of additional network architectures. Across almost all network architectures, our main results remain
consistent. ADAM with β1 = 0.99 consistently reaches lower training loss values as well as better
generalization than NAG.

(A) 1 hidden layer; 1000 nodes (B) 3 hidden layers; 1000 nodes each (C) 5 hidden layers; 1000 nodes each

(D) 3 hidden layers; 300 nodes (E) 3 hidden layer; 3000 nodes (F) 5 hidden layer; 300 nodes

FIGURE 5.F.1: Loss on training set; Input image size 22 × 22

(A) 1 hidden layer; 1000 nodes (B) 3 hidden layers; 1000 nodes each (C) 5 hidden layers; 1000 nodes each

(D) 3 hidden layers; 300 nodes (E) 3 hidden layer; 3000 nodes (F) 5 hidden layer; 300 nodes

FIGURE 5.F.2: Loss on test set; Input image size 22 × 22
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(A) 1 hidden layer; 1000 nodes (B) 3 hidden layers; 1000 nodes each (C) 5 hidden layers; 1000 nodes each

(D) 3 hidden layers; 300 nodes (E) 3 hidden layer; 3000 nodes (F) 5 hidden layer; 300 nodes

FIGURE 5.F.3: Norm of gradient on training set; Input image size 22 × 22
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B Are the full-batch results consistent across different input dimensions?

To test whether our conclusions are consistent across different input dimensions, we do two experi-
ments where we resize the 22 × 22 MNIST image to 17 × 17 and to 12 × 12. Resizing is done using
TensorFlow’s tf.image.resize images method, which uses bilinear interpolation.

Input images of size 17 × 17

Figure 5.F.4 shows results on input images of size 17 × 17 on a 3 layer network with 1000 hidden
nodes in each layer. Our main results extend to this input dimension, where we see ADAM with
β1 = 0.99 both converging the fastest as well as generalizing the best, while NAG does better than
ADAM with β1 = 0.9.

(A) Training loss (B) Test loss (C) Gradient norm

FIGURE 5.F.4: Full-batch experiments with input image size 17 × 17

Input images of size 12 × 12

Figure 5.F.5 shows results on input images of size 12 × 12 on a 3 layer network with 1000 hidden
nodes in each layer. Our main results extend to this input dimension as well. ADAM with β1 = 0.99
converges the fastest as well as generalizes the best, while NAG does better than ADAM with β1 =
0.9.

(A) Training loss (B) Test loss (C) Gradient norm

FIGURE 5.F.5: Full-batch experiments with input image size 12 × 12
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C Additional mini-batch experiments on 22 × 22 sized images

In Figure 5.F.6, we present results on additional neural net architectures on mini-batches of size 100
with an input dimension of 22× 22. We see that most of our full-batch results extend to the mini-batch
case.

(A) 1 hidden layer; 1000 nodes (B) 3 hidden layers; 1000 nodes each (C) 9 hidden layers; 1000 nodes each

(D) 1 hidden layer; 1000 nodes (E) 3 hidden layers; 1000 nodes each (F) 9 hidden layers; 1000 nodes each

(G) 1 hidden layer; 1000 nodes (H) 3 hidden layers; 1000 nodes each (I) 9 hidden layers; 1000 nodes each

FIGURE 5.F.6: Experiments on various networks with mini-batch size 100 on full
MNIST dataset with input image size 22 × 22. First row shows the loss on the full
training set, middle row shows the loss on the test set, and bottom row shows the

norm of the gradient on the training set.
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Chapter 6
PAC-Bayesian Risk Bounds for Neural Nets

6.1 Introduction

At the end of the thesis we finally arrive to explore what is possibly the deepest and the hardest
question about neural nets and that is to understand their risk function. A long standing open ques-
tion in deep-learning is to be able to theoretically explain as to when and why do neural nets which
are massively over-parameterized happen to also minimize the risk even when they fit the training
data arbitrarily accurately. Attempts to explain this have led to obtaining of risk bounds which do
not scale with the number of parameters being trained on, (Bartlett, 1998; Golowich, Rakhlin, and
Shamir, 2018; Harvey, Liaw, and Mehrabian, 2017). Recently it has been increasingly realized that
good risk bounds can be obtained by making the bounds more sensitive to the training algorithm as
well as the training data,(Arora et al., 2019a).

The range of available methods to bound risk or generalization error have been beautifully reviewed
in Audibert and Bousquet, 2007. Here the authors have grouped the techniques into primarily four
categories, (1) “Supremum Bounds” (like generic chaining, Dudley integral, Rademacher complex-
ity), (2) “‘Variance Localized Bounds”, (3) “Data-Dependent Bounds” and (4) “Algorithm Depen-
dent Complexity”. The last category includes PAC-Bayes bounds which have resurfaced as a promi-
nent candidate for a framework to understand risk of neural nets.

Over the years PAC-Bayesian risk bounds have been formulated in many different forms,
(Hinton and Van Camp, 1993; McAllester, 1999; Langford and Seeger, 2001; McAllester, 2003). In the
last couple of years, works like Dziugaite and Roy, 2017, Dziugaite and Roy, 2018a, Dziugaite and
Roy, 2018b and Zhou et al., 2018b have shown the power of the PAC-Bayesian form of analysis of risk
of neural nets. To the best of our knowledge “computational” bounds as demonstrated in the above
reference are the first examples of non-vacuous/non-trivial upperbounds for risks of neural nets of
any kind.

The above bounds are “computational” in the sense that they are obtained as outputs of an algorith-
mic search over hyperparameters on which the posterior distribution used in the bound depends on.
These experiments strongly motivate the current work to search for stronger theoretical basis towards
explaining the power of PAC-Bayesian risk bounds in explaining the generalization ability of neural
nets. We make progress by identifying certain geometrical properties of the process of training nets
which can be leveraged into getting better risk bounds.

6.1.1 A summary of our contributions

In works like Nagarajan and Kolter, 2019b, Nagarajan and Kolter, 2019a, it has been previously un-
derstood that risk bound on nets get better if they can appropriately utilize the information about the
distance of the trained net from initialization. In this work we take a more careful look at this idea.
We can decompose the distance from initialization into two independent quantities (a) a non-compact
part, the change in the norm of the vector of weights of the net (i.e the sum of Frobenius norms of the
layer matrices for a net without bias weights) and (b) a compact part, the angular deflection of this
vector of weights from initialization to the end of training. Previous PAC-Bayes bounds have used

119



Chapter 6. PAC-Bayesian Risk Bounds for Neural Nets

data dependent priors to track the geometric mean of the spectral norms of the layer matrices (de-
noted as β) and have thus tracked the first parameter above. In this work we propose a mechanism of
choosing priors in a data-dependent way from a two-indexed finite set, tracking both the quantities
specified above. The compact angle is tracked by the index called λ in our two-indexed set of priors
as specified in Definition 27.

Our second key innovation is that we show how in the PAC-Bayesian framework one can leverage
more out of the angle parameter by simultaneously training a cluster of nets. In our risk bound in
Theorem 6.3.1 (the main theorem) we imagine starting from a net fB to get to the trained net fA - the
bold faced letter in the subscript of f will denote the (very high dimensional) vector of weights of the
nets.

But alongside training fB to obtain fA, we also obtain a set { fAi}i=1,...,k1 of trained nets - of the same
architecture as fA and obtained using the same data set and using the same algorithm as was used to
obtain fA. This cluster of k1 nets are obtained by doing training starting from multiple instances of
weights initialized at different weight vectors, {Bλ∗ ,j}j=1,...,k1 , of the same norm as B but within a cone
around B whose half-angle λ∗ is determined in a data-dependent way. The angle index λ of the set
of priors, that we introduced previously, covers this choice of the conical half-angle.

Because of this use of clusters, compared to previous bounds our dependency on the distance from
initialization is also more intricate. Our risk bound as derived in Theorem 6.3.1 can be seen to be
scaling with an effective notion of distance between any one of the Ai and the initial cluster of weights
around B the {Bλ∗ ,j}j=1,...,k1 . The bound has the flexibility that it will allow us to choose the Ai which
has the smallest value of this effective distance and thus we are able to be more sensitive to the
average behaviour. That is, for h being the width of the depth d nets being used, if the ith net of the
final cluster {Aj}j=1,...,k1 is closest to the initial cluster {Bλ∗ ,j}j=1,...,k1 then a crude “order” estimate of
the risk bound on the stochastic net centered at fA, that is given by Theorem 6.3.1 can be written as,

O
(︄ √︃

h log
(︂

2dh
δ

)︂
√︁

training set size
×d · B

(︂ d

∏
ℓ=1

∥Ai,ℓ∥2

)︂1− 1
d × inter-cluster distance between Bλ∗ ,js & Ajs

γ

)︄

In above, B is a bound on the input vectors at training, the ℓth−layer matrix corresponding to Ai
is denoted as Ai,ℓ, γ is the margin value of which the margin-loss is being evaluated and the failure
probability for the bound to hold is O(δ). The exact formula for the bound given in Theorem 6.3.1 (the
main theorem) makes it explicit that we have effectively built into the theory more data-dependent
(and hence tunable) parameters which help us improve over existing bounds in multiple conceptual
ways.

We would like to emphasize that our ability to exploit the cluster construction is crucially hinged
on us being able to prove novel data-dependent noise resilience theorems for neural nets as given in
Theorem 6.2.1. This theorem is potentially of independent interest and forms the technical core of our
theoretical contribution. To the best of our knowledge this is the first such construction of a multi-
parameter family of noise distributions on the weights of a neural net with guarantees of stability. In
other words, if the net’s weights are sampled from any of these noise distributions constructed in the
theorem then w.h.p the output on the given data-set is guaranteed to not deviate too much from the
given neural function on that architecture.

Summary of the experimental evidence in favour of our bounds We choose to compare our results
against the bounds from Neyshabur et al., 2017 which we have in turn restated in subsection 6.1.2
with more accurate tracking of the various parameters therein. There are two ways to see why they
are the appropriate baseline for comparison. (a) Firstly since our primary goal is to advance math-
ematical techniques to get better PAC-Bayesian risk bounds on nets we want to compare to other
theoretical bounds in the same framework. The result from Neyshabur et al., 2017 are known to be
the current state-of-the-art PAC-Bayesian risk bounds on nets. (b) Secondly to the best of our knowl-
edge, for the range of depths of neural architectures that we are experimenting on, the bounds in
Neyshabur et al., 2017 are the state-of-the-art among all risk bounds (PAC-Bayesian or otherwise) on
nets as has been alluded to in Nagarajan and Kolter, 2019a.

120



6.1. Introduction

Further when two different theoretical expressions for risk bounds on nets depend on different sets
of parameters of the neural net and its training process, we have to rely on empirical comparison. We
recall that under similar situation this was also the adopted method of comparison to baselines for
the state-of-the-art compression techniques of risk bounds in Arora et al., 2018.

In the experiments in Section 6.4 we will show multiple instances of nets trained over synthetic data
and CIFAR-10 where we supersede the existing state-of-the-art in theoretical PAC-Bayesian bounds of
Neyshabur et al., 2017. On these two datasets we probe very different regimes of neural net training
in terms of the typical values of the angular deflection seen when obtaining the trained weights A
from the initial weights B. In both these situations our bounds are lower than those from, Neyshabur
et al., 2017 as we increase both the depth and the width. Since we plot the bounds in the log scale for
comparison we can conclude from the figures that not only do we have lower/tighter upperbounds we indeed
also have better “rates” of dependencies on the architectural parameters.

In the experiments we also demonstrate different properties of the path travelled by the neural net’s
weight vector during training and these we report in Section 6.5. For instance we observe that the
2−norm of the weight vector of the net increases during training by a multiplicative factor which
varies very little across all the experiments. The factor is between 1 and 3 and is fairly stable for one
order of magnitude change in depths.

6.1.2 Reformulation of the PAC-Bayesian risk bound on neural nets from, Neyshabur
et al., 2017

We start from Theorem 31.1 in Shalev-Shwartz and Ben-David, 2014 on PAC-Bayesian risk bounds
which we re-state below as Theorem 6.1.1.

Definition 22. Let H be a hypothesis class, let h ∈ H, let D be a distribution on an instance space Z,
let ℓ : H × Z → [0, 1] be a loss function and let S be a finite subset of Z. Let m denote the size of S,
i.e. the training-set size. z ∼ D denotes sampling z from D and with slight abuse of notation z ∼ S
denotes sampling z from a uniform distribution over S whenever S is a finite set. Further we define
the expected and empirical risks for h as

L(h) := Ez∼D[ℓ(h, z)] and L̂(h) := Ez∼S[ℓ(h, z)]

Theorem 6.1.1. (PAC-Bayesian Bound On Risk) Consider being given D, H and ℓ as defined above.
Let H also be equipped with the structure of a probability space. Let P, Q be two distributions over
H called the “prior” and the “posterior” distribution respectively. Let S ∼ Dm(Z) and then for every
δ ∈ (0, 1) we have the following guarantee:

PS

[︃
∀Q Eh∼Q[L(h)] ≤ Eh∼Q[L̂(h)]+

√︃
KL(Q||P)+log m

δ
2(m−1)

]︃
≥ 1−δ

The above theorem shows that given a finite sample S from Z, we can choose the posterior distribu-
tion Q as a function of S and the above bound on generalization error is still guaranteed to hold w.h.p.
The mechanism of choosing this Q in such a data-dependent way is made critical by the trade-offs
between keeping the expected empirical risk of Q low and the KL divergence between P and Q low.

The above theorem applies to a wide class of loss functions, but for getting risk bounds specific to
neural nets, hence forth we will focus on the following setup of classification loss.

Definition 23 (Margin Risk of a Multiclass Classifier). Define χ ⊆ Rn to be the input space. Let
k ≥ 2 be the number of classes and set Z = χ × {1, . . . , k} for the rest of the chapter. Let fw : χ → Rk

be a k−class classifier parameterized by the weight vector w and by “ f (x)[y]” we shall mean the yth

coordinate of the output of f when evaluated on x. Let γ > 0 be the “margin” parameter and then
the “γ−Margin Risk” of f is

Lγ( f ) := P(x,y)∼D

[︂
f (x)[y] ≤ γ + max

i ̸=y
f (x)[i]

]︂
.

121



Chapter 6. PAC-Bayesian Risk Bounds for Neural Nets

Analogously L̂γ( f ) denotes the “γ−Empirical Margin Risk” of f computed on a finite sample S ⊂ Z.
We will use m := |S|.

Given this we can now present Theorem 6.1.2 below which is a slight variant of Lemma 1 of Neyshabur
et al., 2017 and for completeness we give its proof in Appendix 6.C.

Theorem 6.1.2 (A special case of the PAC-Bayesian bounds for the margin loss). We follow the
notation from Definition 23. Let { fw | w ∈ W} denote a hypothesis class of k−class classifiers, where
W is a space of parameters. Let P be any distribution (the ”data-independent prior”) on the space W.
Then for any γ > 0, w ∈ W, and finite sample S ⊂ Z, define the family Dγ,w,S of distributions on W
such that for any µ ∈ Dγ,w,S, we have,

Pw′∼µ

[︃
max
(x,y)∈S

∥ fw′(x)− fw(x)∥∞ <
γ

4

]︃
≥ 1

2

Then for any γ > 0 and δ ∈ [0, 1], the following holds

PS

[︄
∀w and µ ∈ Dγ,w,S ∃ distribution µ̃ on W s.t.

Ew̃∼µ̃[L0( fw̃)] ≤ L̂ γ
2
( fw) +

√︄
KL(µ||P) + log 3m

δ

m − 1

]︄
≥ 1 − δ (6.1)

The proof of the above in Appendix 6.C gives an explicit expression of the distribution µ̃ in terms
of µ and w. As is usual in practice the PAC-Bayesian bound in Theorem 6.1.2 will typically be used
on a predictor whose weights have been obtained after training on a data-set S. Now we give a
restatement of the risk bound on neural nets that was presented in Neyshabur et al., 2017 and towards
that we need the following definition,

Definition 24 (Multiclass Neural-Network classifier). Define fA : Rn → Rk to be a depth-d neural-
network with maximum width h, whose ℓth layer has weight matrix Aℓ.1 The first d − 1 layers of fA
use the RELU non-linear activation.2 A := [vec(A1); . . . ; vec(Ad)] is the vector of parameters formed
by concatenating vectorized layer matrices and each coordinate of A is a distinct trainable weight in
the net. Let N(A,σ2) denote the isotropic multivariate Gaussian probability distribution with mean

A and variance σ2I Define β(A) =
(︁

∏d
ℓ=1∥Aℓ∥2

)︁1/d. We will omit the argument A whenever the
neural-network under consideration is clear from the context. Clearly βd upper bounds the Lipschitz-
constant for fA.

Using the definitions above, we now present Theorem 6.1.3 where we give a reformulation of the
“spectrally-normalized margin bound” originally given in Neyshabur et al., 2017.

Theorem 6.1.3 (Spectrally-Normalized Margin bound). Let S and m be as defined in Definition 23
and B be a bound on the norm of the input space χ from Definition 23. Let fw be a given neural
net with parameters as above and let its layer matrices be {Wℓ}d

ℓ=1. Construct a grid B, called the

“beta-grid”, containing K = d
2 ×

(︂ √
m−1

2 exp(3−2/(d−1))

)︂1/d
uniformly spaced points covering the interval[︂(︂

γ
2B

)︂1/d
,
(︂ √

m−1γ
4 exp(3−2/(d−1))B

)︂1/d]︂
. If β̃ = argminx∈B |x − β(w)| and

σ(β̃) :=
1

d
√︁

2h log(4dh)
min

{︂ γ

4e2Bβ̃
d−1 ,

β̃

e
1

d−1

}︂
(6.2)

1This network does not have any bias weights.
2In general any 1-Lipschitz activation will do.
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6.2. A noise resilience guarantee for a certain class of neural nets

Then we have the following guarantee for all δ ∈ (0, 1
K ),

PS∼Dm

[︄
∃ µ̃w s.t Ew+ũ∼µ̃w

[L0( fw+ũ)] ≤ L̂ γ
2
( fw) +

√︃
1

m − 1

√︄
∑d

ℓ=1
∥Wℓ∥2

F
2σ(β̃)2

+ log
3m
δ

]︄
≥ 1 − Kδ

(6.3)

For completeness we have re-derived the above in Appendix 6.D.

Remark. Theorem 6.1.3 above slightly differs from the original statement of Theorem 1 in Neyshabur
et al., 2017 because of the following adaptations and improvements that we have made, (a) we tracked
the various constants more carefully, (b) we have removed some of their assumptions and have cho-
sen to report the bound as being on a stochastic neural risk as is most natural in this context and (c)
we used a more refined way to account for the data-dependent priors.

6.2 A noise resilience guarantee for a certain class of neural nets

Definition 25 (Mixture Parameters). Let k1 ≥ 2 denote the number of components in a “mixture”
distribution. Let A = {Ai ∈ Rdim(A) | i = 1, .., k1} denote a set of neural net weight vectors on the
underlying architecture of fA. Let P = {pi | i = 1, . . . , k1} be a set of non-zero scalars. The mixture
weights satisfy ∑i pi = 1. Define βi := β(Ai) as defined in Definition 24. Further define Ai,ℓ to be the
ℓth layer of Ai.

Using the above setup we can state our main technical result as follows,

Theorem 6.2.1 (Controlled output perturbation with noisy weights from a mixture of Gaussians).
Given S and χ as in Definition 23, let B > 0 be s.t the input space χ is a subset of the ball of radius B
around the origin in Rn. Further let fA and β be as in Definition 24 and A,P and {βi}i=1,...,k1 as in
Definition 25, we choose any ϵ > 0 s.t the following inequalities hold,

∀ i∈{1 . . . k1}, x∈S ∥ fAi (x)− fA(x)∥ ≤ ϵ∥ fA(x)∥

Then for every γ > ϵ maxx∈S∥ fA(x)∥ and δ ∈ (0, 1), we have,

PA′∼MG(posterior)

[︂
max
x∈S

∥ fA′(x)− fA(x)∥>2γ
]︂
≤ δ

Where MG(posterior)(w) = ∑i piN(Ai ,σ2)(w) and σ ≤ 1√︃
2h log

(︂
2dhk1

δ

)︂ min1≤i≤k1 min
{︃

βi
d , γ

k1edBpi β
d−1
i

}︃
.

The above theorem has been proven in Section 6.6.

6.3 Our PAC-Bayesian risk bound on neural nets

Now we use Theorem 6.2.1 about controlled perturbation of nets to write the following theorem
which is adapted to the setting of the experiments to be described in Section 6.4. Towards that we de-
fine the following notion of a “nice” training data which captures the effect that a set of nets evaluates
to almost the same output on some given dataset,

Definition 26 (“Nice” training dataset). Given neural weights A and {Ai}i=1,...,k1 as in Definition 25,
we call a training dataset S as (ϵ, γ)−nice w.r.t. them if it satisfies the following conditions:

1. maxx∈S∥ fAi (x)− fA(x)∥ ≤ ϵ∥ fA(x)∥, ∀1≤i≤k1

2. γ > ϵ maxx∈S∥ fA(x)∥
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Chapter 6. PAC-Bayesian Risk Bounds for Neural Nets

Next we define a two-indexed set of priors which will be critical to our PAC-Bayesian bounds.

Definition 27 (Our 2−indexed set of priors). Let B > 0 be s.t the input space χ in Definition 23 is a
subset of the ball of radius B around the origin in Rn. Given S, m as in Definition 23 and d, h as in
Definition 24, we choose scalars dmin, γ, δ > 0 s.t. the following interval I is non-empty,

I :=

[︄(︂ γ

2B

)︂ 1
d ,

⎛⎜⎜⎝ γ
√︁

2(m − 1)

(8Be3ddmin)

√︃
2h log

(︂
2dh

δ

)︂
⎞⎟⎟⎠

1
(d−1) ]︄

Let fB be a neural network. Consider a finite set of indices Λ = {1, . . . , 314}. For each λ ∈ Λ we are
given k1 distinct neural net weights {Bλ,j}k1

j=1 within a conical half-angle of 0.01λ around B. For each
λ, we construct a grid Bλ, called the “beta-grid”, containing at most,

K1 =
d
2
×

⎛⎜⎜⎝ γ
√

2(m−1)

(8Be3ddmin)

√︄
2h log

(︂
2dh

δ

)︂
⎞⎟⎟⎠

1
(d−1)

(︂
γ

2B

)︂ 1
d

points inside the interval I specified above. Now for each λ ∈ Λ and σ̃ ∈ Bλ we consider the
following mixture of Gaussians 1

k1
∑k1

j=1 N(Bλ,j ,σ̃2 I). Thus we have a grid of priors of total size K :=
314K1.

Remark. (a) Note that this set of mixture of Gaussian priors above indexed by λ and σ̃ corresponds to
the set of distributions that we call {πi} in the general Theorem 6.B.1 (b) The specific choice of the set
Λ given above is only for concreteness and to keep the setup identical to the experiments in sections
6.4 and 6.5 and this choice is not crucial to the the main theorem to be given next.

The choice of the parameters Λ, γ, ϵ and dmin The parameter B gets fixed by the assumption of
boundedness of the data space χ and we choose the training data size m. The set Λ above is a
convenient choice that we make motivated by experiments as a way to index a grid on the π−radians
of possible deflection that can happen when the net fB is trained to some final net (which we have
been denoting as fA as in subsection 6.1.1). Also note that in practice when presented with the neural
nets fA and { fAi}

k1
i=1 (which in turn fixes the value of depth d and width h) and the training data set

S we would choose the smallest values of γ and ϵ so that the conditions in Definition 26 are satisfied.
Then we choose δ (typically δ = 0.05) which determines our confidence parameter 1− δ. At this point
except dmin all other parameters are fixed that go into determining the interval I above. Now we can
just choose dmin low enough so that the interval I is non-empty. Once dmin is chosen the value of K1
and hence the size of the prior set also gets fixed.

Now we use the above definitions and the notations therein to state our main theorem as follows,
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6.3. Our PAC-Bayesian risk bound on neural nets

FIGURE 6.3.1: Starting from the weight vector B we get the trained weight vector A. Θ
is the angle to which the angle of deflection ∡(A, B) has been discretized to.

Theorem 6.3.1 (Gaussian-Mixture PAC-Bayesian Bound). As indicated in Figure 6.3.1, suppose
we train using the dataset S to obtain the trained net fA from an initial neural net fB. Let α =

arccos ⟨A,B⟩
∥A∥∥B∥ . Let λ∗ = argminλ∈Λ |0.01λ − α|. Further, let the neural weight vectors {Ai}i=1,...,k1 be

obtained by training the nets { fBλ∗ ,j
}j=1,...,k1 on S. Further for each such i define di,∗ = minj=1,...,k1∥Ai −

Bλ∗ ,j∥2 and β̃i = argminx∈Bλ∗
|x − β(Ai)|.

Then it follows that for all ϵ > 0 and δ ∈ (0, 1
K ),

PS

[︄
∃ µ̃A s.t. , ∀i s.t. di,∗ ≥ dmin, EA+ũ∼µ̃A

[L0( fA+ũ)] ≤ L̂ γ
2
( fA) +√︃

1
m − 1

√︄
− log

(︂ 1
k1

∑k1
j=1 exp(− 1

2σ̃2
i
∥Ai − Bλ∗ ,j∥2)

)︂
+ log

3m
δ⃓⃓⃓

S is (ϵ, γ)-nice w.r.t {A, Ai=1,...,k1}
]︄
≥ 1 − Kδ (6.4)

where σ̃2
i := 1

2h log( 2dh
δ )

(︃
min

{︃
β̃i

de
1

d−1
,

γ
8

e2dBβ̃
d−1
i

}︃)︃2

The proof of the above Theorem has been given in Section 6.7
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Chapter 6. PAC-Bayesian Risk Bounds for Neural Nets

Remark. We emphasize that the structure of the above theorem is the same as that of the general
PAC-Bayes bound as stated in Theorem 6.1.1. The distribution µ̃A above is a choice of the posterior
distribution that is called Q in the general theorem. Hence its w.r.t this µ̃A that we are bounding with
high probability the stochastic risk of the neural net fA under the loss function L0

Secondly the distribution µ̃A here is explicitly constructed such that, for the sampled noisy weights
A + ũ it is ensured that maxx∈S∥ fA+ũ(x)− fA(x)∥∞ < γ

4 . Also we emphasize that in the above λ∗

as defined is s.t 0.01 × λ∗ is the closest angle in the set {0.01, 0.02, . . . , 3.14} to the angle between the
initial net’s weight vector B and the trained net’s weight vector A

We note the following salient points about the above theorem,

• In our experiments the nets {Ai}i=1,...,k1 will be obtained by training the nets { fBλ∗ ,j
}j=1,...,k1 on

the same training data S using the same method by which we obtain fA from fB.

• We emphasize that the above setup is not tied to any specific method of obtaining the initial
and final clusters of nets. For example there are many successful heuristics known for “com-
pressing” a neural net while approximately preserving the function. One can envisage using
the above theorem when such a heuristic is used to get such a cluster {Bλ∗ ,j} from B and {Ai}
from A.

• For each of the different choices amongst {Ai}k1
i=1 which satisfy the condition di,∗ ≥ dmin we can

get a different upper bound on the risk in the LHS. Hence this theorem gives us the flexibility
to choose amongst {Ai}k1

i=1 those that give the best bound.

• We note that after a training set S has been sampled, we require no niceness condition on the
nets which will have to hold over the entire domain of the nets. The upperbound as well as the
confidence on the upperbound are all entirely determined by the chosen data-set S.

• Corresponding to the experiments in the next section we will observe in section 6.5 that the
angular deflection α above is predominantly determined by the data-distribution from which S
is being sampled from and at a fixed width it decreases slightly with increasing depth.

The improvements seen in our approach to PAC-Bayesian risk bounds strongly suggest that the
consistent patterns of dilation of the weight matrix norms (also reported in section 6.5) and the
angular deflection of the net’s weight vector merit further investigation.

6.4 Experimental comparison of our bounds with Neyshabur et al.,
2017

Here we present empirical comparisons between OUR PAC-Bayesian risk bound on nets in Theorem
6.3.1 and the result in Theorem 6.1.3 reproduced from Neyshabur et al., 2017, which we denote as the
NBS bound.

We compute the two bounds for neural nets without bias weights (as needed by these two theorems
stated above). We posit that the fair way to do comparison is to only choose the initial net, data-set
and the training algorithm (including a stopping criteria) and to compute the different theories on
whatever is the net obtained at the end of the training. We test the theories on the following different
classification tasks (a) binary classification tasks on parametrically varied kinds of synthetic datasets
which have two linearly separable clusters and (b) multi-class classification of the CIFAR−10 dataset.
In both the cases we study effects of varying the net’s width and depth.

It is to be noted that all the following experiments have been also done over varying sizes of the
training data set and the advantage displayed here of OUR bound over NBS’s result, is robust to this
change.
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6.4.1 CIFAR-10 Experiments

Here the nets we train are of depths 2, 3, . . . , 8 and 16 and we vary the number of ReLU gates in a
hidden layer (h) between 100 and 200. We train the networks to a test-accuracy of approximately 50%
which is close to the best known performance of feed-forward networks on the CIFAR-10 dataset.
The neural networks are initialized using the “Glorot Uniform” initialization and we use the ADAM
weight update rule on the cross-entropy training loss. In each epoch we use mini-batch size 300 and
we set k1 = 25 (k1 as defined in Theorem 6.3.1).

Results We test both the theories, OUR bound in equation (6.4) and the NBS bound in equation
(6.3), at 95% confidence i.e at Kδ = 0.05 in the above referenced equations.

Having trained the initial cluster as needed in Theorem 6.3.1, we choose the smallest ϵ and γ that
satisfy the “niceness” condition in Definition 26. In experiments we see that often (not always) this
minimum γ needed to satisfy this condition increases with the depth of the net. At any fixed archi-
tecture and dataset we evaluate both the theories at the same value of γ chosen as said above. We repeat the
experiment with 10 different random seeds (which changes the data-set, the initial cluster choices
and the mini-batch sequence in the training).

In Figure 6.4.1 we see examples of how OUR bounds do better than NBS. We plot OUR bound for
the ith point in the final cluster (as defined in equation 6.4) that achieves the lowest bound. (We
always start from taking a very small value as the choice of dmin, as required in Definition 27, s.t in
experiments the distance between the clusters was always bigger than that.) Note the log-scale in
the y−axis in this figure and hence the relative advantage of our bound is a significant multiplicative
factor which is increasing with depth. And at large widths our bound seems to essentially flatten out in its
depth dependence.

2 4 6 8 10 12 14 16
depth

102

103

104

= 127.2

= 164.0

= 172.2
= 182.4

= 202.7
= 192.2

= 223.3

= 2040.9

Cifar Dataset
NBS
Ours

FIGURE 6.4.1: In the above figures we plot the risk bounds (in the y−axis) predicted by
Theorem 6.3.1 and Theorem 6.1.3 for trained nets at different depths, the x− axis. We
can see the comparative advantage across depths in favour of OUR bound over NBS
when tested on CIFAR-10 while the width of the net is 100 for the figure on the left and

width is 400 for the figure on the right.

6.4.2 Synthetic Data Experiments

In this section we show a comparison between OUR and NBS bounds on a synthetic dataset which
allows for probing the theories in a very different regime of parameters than CIFAR-10. Here the
classification accuracies of the nets are near perfect, the margin parameters and the angular deflection
of the net during training are significantly lower.

Dataset We randomly sample m = 1000 points in Rn from two different isotropic variance 1 normal
distributions centered at 1 = (1, 1, . . . , 1) and a1 for n = 20 and 40 and for a ∈ {2, 4, 6, 8, 10}. We reject
a sample x if min(||x − 1||∞, ||x − a1||∞) > 1. Thus the inter-cluster distance varies with a. When
n = 20 then we set B = 50 and otherwise B = 100.
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Architecture and training We train fully-connected feed-forward nets of depth 2, 3, . . . , 8 on the
cross-entropy loss function. Each hidden layer has 800 ReLU gates. As before we initialize the neural
network layers using the “Glorot Uniform” initialization and train using ADAM (mini-batch size
100). Networks with depth d < 5 required 5 epochs and d ≥ 5 require 8 epochs for training to 100%
train and test accuracy. Our risk bounds are computed using cluster size of k1 = 25 as before.

Results The parameters K and δ are set so that the confidence on the bounds is at 95%. For each
network depth we compute our bound 10 times using 10 different random seeds. Each trial achieves
approximately 100% test accuracy and we plot the bound for the seed which achieves the minimum
value of γ. For each network depth we label the value of γ used to compute the bounds. The same
value of γ is used for computing both OUR and NBS bounds. We compute OUR bound for the ith

cluster point that achieves the lowest bound.

In Figure 6.4.2 we compare OUR bound in Theorem 6.3.1 to the NBS bound in Theorem 6.1.3 at two
of the many parameter configurations of the above model where we have tested the theories. Again
we find that our bound is consistently lower by a multiplicative factor than the previous PAC-Bayes
bound.

2 3 4 5 6 7 8
depth

104

= 2.1

= 5.5 = 9.1
= 17.9 = 47.7

= 79.7 = 114.2

Synthetic Dataset with a=6, n=20
NBS
Ours

2 3 4 5 6 7 8
depth

103

104

= 3.3

= 5.0 = 8.4
= 15.8 = 45.2

= 58.6 = 235.9

Synthetic Dataset with a=10, n=20
NBS
Ours

FIGURE 6.4.2: In the above figures we plot the risk bounds (in the y−axis) predicted
by Theorem 6.3.1 and Theorem 6.1.3 for trained nets at different depths, the x− axis. In
particular here we compare the two theories when the synthetic data generation model
is sampling in n = 20 dimensions with the cluster separation parameter a = 6 in the

left figure and a = 10 in the right figure.

6.5 Experimental observations about the geometry of neural net’s
training path in weight space

Our approach to PAC-Bayesian risk bounds for neural nets motivates us to keep track as to how
during training the norm of the neural net’s weight vector changes and by how much angle this
vector deflects. In here we record our observations about the interesting patterns that these two
parameters were observed to have for the two kinds of experiments that were done in the previous
section. The structured behaviours as seen here are potentially strong guidelines for directions for
future theoretical developments.

Data from the experiments on CIFAR-10 in subsection 6.4.1

• We show in Figure 6.5.1 the Gaussian kernel density estimation, (Scott, 2015), of the angular
deviation (α in Theorem 6.3.1) over the 10 trials at every depth at a width of 100. We can see
that the angular deflection is fairly stable to architectural changes and is only slightly decreasing
with depth. Similar pattern is also observed at higher widths.

• In Figure 6.5.2 we show the initial parameter norm vs the final parameter norm for training
nets of different depths at width 100 on the CIFAR dataset. Thus its demonstrated that the
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FIGURE 6.5.1: Gaussian kernel density estimate on 10 trials of the experiment (for
every depth d and 100 width) measuring the angular deviation of the weight vector

under training

multiplicative factor with which the norm increases during training is also fairly stable to ar-
chitectural changes.
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16

FIGURE 6.5.2: Initial parameter norm ∥B∥2 vs final parameter norm ∥A∥2 with in-
creasing depths (at width 100) on the CIFAR-10 dataset. 10 trials are displayed for each

architecture.

Data from the experiments on synthetic data in subsection 6.4.2

• In Figure 6.F.1 in Appendix 6.F we show the KDE of the angular deviation θ between the initial
and final networks for different depths d and cluster separations a. The KDE was obtained
from θ values obtained through 10 trials. Here we observe that the mean value of the angular
deflection due to training is only slightly affected by the architectural choices or the cluster
separation parameter. The variance of the distribution of the angle increases with increase in d
and a and the mean value tends to slightly decrease with increasing depths. (Note that the mean
angular deflection for CIFAR−10 that we saw in the previous experiment was significantly
larger than here.)

• Lastly in Figure 6.5.3 we show the variation between the initial and the final norms for the inter-
cluster separation of a = 2. We observe a consistent (and surprising) behaviour that training
seems to dilate the sum of Frobenius norms of the net and the dilation factor is close to 1 at
depth 2 and increases to about 2.5 for about an order of magnitude of increase in depths. This
behaviour is fairly stable across different values of a that we tried and recall that this same
phenomenon was also demonstrated on CIFAR-10.

6.6 Proof of Theorem 6.2.1

Towards proving the main Theorem 6.2.1 we need the following definition and lemma,
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FIGURE 6.5.3: Scatter plot of ||A||2 versus ||B||2 for neural networks of depths
2, 3, . . . , 8, for cluster separation a = 2 in ambient dimension n = 20. For each depth
we run 10 trials with different random initializations and mini-batch sequence in the

SGD.

Definition 28 (Random Neural Network). Let us denote as, fN(Ai ,σ2)
the random neural net function

obtained by sampling its weights from the isotropic Gaussian distribution with p.d.f N(Ai ,σ2).

Lemma 6.6.1 (Controlled output perturbation of Gaussian weights). Let us be given a set of neural
net weight vectors (for a fixed architecture) A = {Ai}i=1,..,k1 s.t that ∥Ai,ℓ∥ = βi for all i ∈ {1, . . . , k1}
and ℓ ∈ {1, . . . , d}. If,

σ ≤ 1√︂
2h log 2dhk1

δ

min
i∈{1,...,k1}

min

{︄
βi
d

,
γ

k1edBpiβ
d−1
i

}︄
(6.5)

Then,

P

(︄
k1

∑
i=1

pi∥ fN
(Ai ,σ2 I)

− fAi∥ > γ

)︄
< δ (6.6)

Proof of Lemma 6.6.1. Let Ū = {Ui,l | i = 1, . . . , k1, ℓ = 1, . . . , d} be a set of size d · k1 containing
h−dimensional random matrices, such that each matrix Ui,ℓ ∼ N(0, σ2)

We can define matrices {Bp ∈ Rh×h | p = 1, . . . , h2} s.t each Bp has σ in an unique entry of it and all

other entries are 0. Then it follows that as random matrices, Ui,ℓ = ∑h2

p=1 γpBp with γp ∼ N(0, 1). We

note that ∥∑h2

p=1 BpB⊤
p ∥ = h · σ2 since h is the largest eigenvalue of an all ones h−dimensional square

matrix. Now we invoke Corollary 4.2 of Tropp, 2012 here to get for any t > 0,

PUi,ℓ [∥Ui,ℓ∥2 > t] ≤ 2he−
t2

2hσ2 (6.7)

Using union bound we have, PŪ [∃(i, ℓ) s.t ∥Ui,ℓ∥ > ti] ≤ 2dh ∑k1
i=1 e−

t2i
2hσ2 . So we have,

1 − 2dh
k1

∑
i=1

e−
t2i

2hσ2 ≤ PŪ [∀(i, ℓ) s.t ∥Ui,ℓ∥ ≤ ti] (6.8)

Let Ai,ℓ be the induced matrix in the ℓth−layer from the neural weight vector Ai. Let Ui,l be the
perturbation for Ai,l and suppose, ∥Ui,ℓ∥ ≤ 1

d∥Ai,ℓ∥.3 We have by Lemma 2 of Neyshabur et al., 2017

3Since the width of the net is assumed to be uniformly h it follows that Ui,ℓ is of the same dimensions as Ai,ℓ.
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and our assumption of uniform spectral norms for the layer matrices,

∥ fAi+(vec(Ui,ℓ))ℓ=1,2,..,d
− fAi∥ ≤ eBβd−1

i

d

∑
ℓ=1

∥Ui,ℓ∥2 (6.9)

From equations (6.9-6.8) it follows that if ∀i ti ≤ βi
d then we have,

1 − 2dh
k1

∑
i=1

e−
t2i

2hσ2 ≤PŪ [∀(i, ℓ) s.t ∥Ui,ℓ∥ ≤ ti]

≤PŪ [∀i, ∥ fAi+(vec(Ui,ℓ))ℓ=1,2,..,d
− fAi∥ ≤ eBβd−1

i
(︁ d

∑
l=1

ti
)︁
= eBβd−1

i dti]

≤P

[︄
k1

∑
i=1

pi∥ fAi+(vec(Ui,ℓ))ℓ=1,2,..,d
− fAi∥ ≤ edB

k1

∑
i=1

piβ
d−1
i ti

]︄
Let γ > 0 and chose ti s.t

edB
k1

∑
i=1

piβ
d−1
i ti ≤ γ (6.10)

hence, we get

1 − 2dh
k1

∑
i=1

e−
t2i

2hσ2 ≤P

[︄
k1

∑
i=1

pi∥ fAi+(vec(Ui,ℓ))ℓ=1,2,..,d
− fAi∥ ≤ γ

]︄
(6.11)

A sufficient condition for (6.10) is ti ≤ γ

k1edBpi β
d−1
i

. Combined with the condition that ti ≤ βi
d it follows

that (6.11) holds if ∀i ∈ {1, . . . , k1},

ti ≤ min

{︄
βi
d

,
γ

k1edBpiβ
d−1
i

}︄
(6.12)

To get (6.6) we choose σ s.t ∑k1
i=1 e−

t2i
2hσ2 ≤ δ

2dh This is ensured if maxi=1,...,k1 e−
t2i

2hσ2 ≤ δ
2dhk1

⇐⇒
mini=1,...,k1

t2
i

2hσ2 ≥ − log
(︂

δ
2dhk1

)︂
⇐⇒

σ2 ≤ mini=1,...,k1 t2
i

2h log
(︂

2dhk1
δ

)︂ (6.13)

We can maximize σ2 and obey constraints (6.13-6.12) by setting

σ2 =
1

2h log
(︂

2dhk1
δ

)︂ (︄ min
i∈{1,...,k1}

min

{︄
βi
d

,
γ

k1edBpiβ
d−1
i

}︄)︄2

(6.14)

Using the above now we can demonstrate the proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. Given the assumption we have that, ∀i ∈ {1, . . . , k1} and x ∈ S, ∥ fAi (x) −
fA(x)∥ ≤ ϵ∥ fA(x)∥, we have the following inequality for all neural weights A′,

∥ fA′(x)− fA(x)∥ ≤ ∥ fA′(x)− fAi (x)∥+ ∥ fAi (x)− fA(x)∥ ≤ ∥ fA′(x)− fAi (x)∥+ ϵ∥ fA(x)∥
(6.15)

=⇒ ∥ fA′(x)− fA(x)∥ ≤ ϵ∥ fA(x)∥+ min
i∈{1,...,k1}

∥ fA′(x)− fAi (x)∥ (6.16)

≤ ϵ∥ fA(x)∥+ Z (6.17)
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where in the last line above we have defined, Z = mini∈{1,...,k1}∥ fA′(x)− fAi (x)∥. Now for a choice
of γ(x) s.t γ(x) > ϵ∥ fA(x)∥ and using inequation 6.15 we have the following inequalities being true
for the given distribution MG(posterior),

PA′∼MG(posterior) (∥ fA′(x)− fA(x)∥ > 2γ(x)) ≤ P (ϵ∥ fA(x)∥+ Z > 2γ(x)) (6.18)

≤ P (Z > 2γ(x)− ϵ∥ fA(x)∥) (6.19)
≤ P (Z > γ(x)) (6.20)

A′ being randomly sampled from the distribution MG(posterior) can be imagined to be done in two
distinct steps, (1) first we select a center among the set {Ai}i=1,...,k1 by sampling a random variable
Y valued in the set, {1, . . . , k1} with probabilities {pi}i=1,...,k1 and then (2) sample the weights from,
N(AY ,σ2 I).

We define a collection of k1 mutually independent random variables {Zj := mini∈{1,...,k1}∥ fP(x)−
fAi (x)∥}j=1,...,k1 with P ∼ N(Aj ,σ2 I). Clearly Zj = Z | Y = j. Thus we have the following relationship
among the events,

{Z > γ(x)} = { min
i∈{1,...,k1}

∥ fA′(x)− fAi (x)∥ > γ(x)} =
k1⋃︂

j=1
{(Z > γ(x)) ∩ (Y = j)} (6.21)

=⇒ P (Z > γ(x)) =
k1

∑
j=1

P (Z > γ(x) | Y = j)P (Y = j) =
k1

∑
j=1

P
(︁
Zj > γ(x)

)︁
P (Y = j) (6.22)

In the above we invoke the definition that, P(Y = j) = pj and that by the definition of Zj it follows
that, Zj ≤ ∥ fP(x)− fAj(x)∥ (where P ∼ N(Aj ,σ2 I)). Then we get,

P (Z > γ(x)) ≤
k1

∑
j=1

pjPP∼N
(Aj ,σ

2 I)

(︂
∥ fP(x)− fAj(x)∥ > γ(x)

)︂
(6.23)

Now for the kind of nets we consider i.e ones with no bias vectors in any of the layers it follows
from the definition of {βi}i=1,...,k1 that has been made that the function computed by the net remains
invariant if the layer weight Ai,ℓ is replaced by βi

∥Ai,ℓ∥Ai,ℓ. And we see that the spectral norm is identi-
cally βi for each layer in this net with modified wights. So we can assume without loss of generality
that Ai,ℓ = βi for all i and ℓ. Hence it follows that the RHS in equation 6.23 is exactly the quantity
for which guarantees have been given in Lemma 6.6.1. And by de-homogenizing the definition of
βi as given in Lemma 6.6.1, the appropriate value of σ can be realized to be the same as given in the
theorem statement,

σ2 =
1

2h log
(︂

2dhk1
δ

)︂
⎛⎝ min

i∈{1,...,k1}
min

⎧⎨⎩
(︁
∏ℓ=1,...,d∥Ai,ℓ∥

)︁ 1
d

d
,

γ(x)

k1edBpi
(︁
∏ℓ=1,...,d∥Ai,ℓ∥

)︁1− 1
d

⎫⎬⎭
⎞⎠2

(6.24)

In the above we replace γ(x) with γ := ϵ maxx∈S∥ fA(x)∥ and going back to equation 6.18 we can get
a concurrent guarantee for all x ∈ S as required in the theorem as,

PA′∼MG(posterior) (∀x ∈ S, ∥ fA′(x)− fA(x)∥ > 2γ) ≤ δ
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6.7 Proof of Theorem 6.3.1

Proof. Given that (ϵ, γ)−nice w.r.t {A, Ai=1,...,k1} (as defined in Definition 26), we can invoke Theorem
6.2.1 with k1 = 1 between the trained nets fA and fAi . We recall the definition of βi that, βd

i =

∏ℓ=1,...,d∥Ai,ℓ∥ for Ai,ℓ being the ℓth layer matrix corresponding to Ai.

Let the β−grid be denoted as {β̃k} s.t there exists a point β̃ in this grid s.t,

|βi − β̃| ≤ βi
d

=⇒ βd−1
i
e

≤ β̃
d−1 ≤ eβd−1

i (6.25)

Now we recall that by invoking Theorem 6.2.1 on the net fAi , the σ (in terms of βi) that would be
obtained from there is a maximal choice that the proof could have given us. Hence a smaller value
of σ will also give the same guarantees and we go for the following value of the variance defined in
terms of the β̃ defined above,

σ̃2 :=
1

2h log
(︂

2dh
δ

)︂ (︄min

{︄
β̃

de
1

d−1
,

γ
8

e2dBβ̃
d−1

}︄)︄2

(6.26)

In the above we have set the pi parameter of Theorem 6.2.1 to 1 and have also rescaled the γ parameter
to γ

8 so that we have from Theorem 6.2.1 that,

PA′∼N(Ai ,σ̃2 I)

[︂
max
x∈S

∥ fA′(x)− fA(x)∥ > 2 × γ

8

]︂
≤ δ (6.27)

(6.28)

Since, maxx∈S∥ fA′(x)− fA(x)∥ < γ
4 =⇒ maxx∈S∥ fA′(x)− fA(x)∥∞ < γ

4 we have,

PA′∼N(Ai ,σ̃2 I)

[︂
max
x∈S

∥ fA′(x)− fA(x)∥∞ <
γ

4

]︂
≥ 1 − δ

Hence we are in the situation whereby Theorem 6.1.2 can be invoked with A = w and µw =
N(Ai, σ̃2 I) to guarantee that there exists a distribution µ̃w s.t the following inequality holds with
probability at least 1 − δ over sampling m sized data-sets

EA+ũ∼µ̃A
[L0( fA+ũ)] ≤ L̂ γ

2
( fA) +

√︄
KL(N(Ai, σ̃2 I)||P) + log 3m

δ

m − 1
(6.29)

Because the grid of {β̃k} was pre-fixed we can choose the prior distribution P in a data-dependent
way from the grid of priors specified in the Definition 27 with their variance being σ̃ as given in
Definition 6.26, determined by a chosen element from this set {β̃k}! Now we recall the definition of
the net weights, {Bλ∗ ,j}j=1,...,k1 in the theorem statement and we choose,

P := a distribution s.t its p.d.f is
1
k1

k1

∑
j=1

N(Bλ∗ ,j ,σ̃
2 I)

And this means that for the KL-term above we can invoke Theorem 6.A.1 with f = N(Ai, σ̃2 I) and
GM = P to get,
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KL(N(Ai, σ̃2 I)||P) ≤ − log

[︄
1
k1

k1

∑
j=1

e−
1

2σ̃2 ∥Ai−Bλ∗ ,j∥2
]︄

(6.30)

We recall that our angle grid (which determines the value of λ∗ above as described in the theorem
statement) was of size 314 and K1 was the size of the β−grid and thus the size of the full grid of priors
is 314K1 =: K

Hence its clear as to how equation 6.29 holding true for each of the K possible choices of P decided by
the mechanism described above, satisfies the required hypothesis for Theorem 6.B.1 to be invoked.
The required theorem now follows by further upperbounding the KL-term in equation 6.29 as given
in equation 6.30.

Now we are left with having to specify the required grid {β̃k}k=1,...,K1 so that we are always guaran-
teed to find a β̃ as given in Definition 6.25. Towards that we upperbound equation 6.30 as follows,

KL(N(Ai, σ̃2 I)||P) ≤ − log

[︄
1
k1

k1

∑
j=1

e−
1

2σ̃2 ∥Ai−Bλ∗ ,j∥2
]︄
≤ − log

[︄
1
k1

k1

∑
j=1

e−
1

2σ2 ∥Ai−Bλ∗ ,j∥2
]︄

(6.31)

where we have gotten the second inequality by recalling Definitions 6.26, 6.25 and defining,

σ2 :=
1

2h log (2dh/δ)

(︄
min

{︄
βi

de
2

d−1
,

γ/8
e3dBβd−1

i

}︄)︄2

=

(︄
βi exp− 2

(d−1)

d
√︃

2h log
(︂

2dh
δ

)︂
)︄2

min

{︄
γ2

(8Bβd
i exp (3 − 2

d−1 ))
2

, 1

}︄

Now we observe the following,

1. When βi ≤
(︂

γ
2B

)︂1/d
this implies ∥ fAi (x)∥ ≤ γ

2 which implies L̂γ = 1 by definition. Therefore
equation 6.29 holds trivially.

2. We can ask when is it that the upperbound on the KL term given in equation 6.31 in terms of

this σ such that the resultant upperbound on
√︂

2KL(N(Ai ,σ̃2 I)||P)
m−1 (when substituted into equation

6.29) greater than 1 i.e the range of βi for which the following inequality holds (and thus making
the inequality 6.29 hold trivially by ensuring that the ensuing upperbound on the RHS of it is
greater than 1),

1 ≤
− log

[︃
1
k1

∑k1
j=1 e−

1
2σ2 ∥Ai−Bλ∗ ,j∥2

]︃
m − 1

=
1

m − 1
log
[︂ 1

1
k1

∑k1
j=1 e−

1
2σ2 ∥Ai−Bλ∗ ,j∥2

]︂
(6.32)

log
[︂ 1

1
k1

∑k1
j=1 e−

1
2σ2 ∥Ai−Bλ∗ ,j∥2

]︂
≥ log

[︂ 1
1
k1

∑k1
j=1 maxi,j{e−

1
2σ2 ∥Ai−Bλ∗ ,j∥2}

]︂
= log

[︂ 1
1
k1

∑k1
j=1 e−

1
2σ2 mini,j{∥Ai−Bλ∗ ,j∥2}

]︂

Now we invoke the definition of dmin to get,

log
[︂ 1

1
k1

∑k1
j=1 e−

1
2σ2 min{∥Ai−Bλ∗ ,j∥2}

]︂
≥ d2

min
2σ2
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Thus substituting back into equation 6.32 we see that a sufficient condition for 6.32 to be satis-
fied is,

(︄
βi exp− 2

(d−1)

d
√︃

2h log
(︂

2dh
δ

)︂
)︄2

min

{︄
γ2

(8Bβd
i exp (3 − 2

d−1 ))
2

, 1

}︄
= σ2 ≤ d2

min
2(m − 1)

A further sufficient condition for the above to be satisfied is,

(︄
βi exp− 2

(d−1)

d
√︃

2h log
(︂

2dh
δ

)︂
)︄2

· γ2

(8Bβd
i exp (3 − 2

d−1 ))
2
≤ d2

min
2(m − 1)

The above leads to the constraint, βi ≥
(︂

γ
√

2(m−1)

(8Be3ddmin)

√︄
2h log

(︂
2dh

δ

)︂)︂ 1
(d−1)

Thus we combine the two points above to see that a relevant interval of βi is,

[︂(︂ γ

2B

)︂ 1
d ,

⎛⎜⎜⎝ γ
√︁

2(m − 1)

(8Be3ddmin)

√︃
2h log

(︂
2dh

δ

)︂
⎞⎟⎟⎠

1
(d−1) ]︂

We recall that the parameters have been chosen so that the above interval is non-empty.

We note that if we want a grid on the interval [a, b] s.t for every value x ∈ [a, b] there is a grid-point g
s.t |x − g| ≤ x

d then a grid size of bd
2a suffices. 4 Hence the a grid of the following size K1 suffices for

us to capture with needed accuracy all the possible values of βi,

K1 =
d
2
×

⎛⎜⎜⎝ γ
√

2(m−1)

(8Be3ddmin)

√︄
2h log

(︂
2dh

δ

)︂
⎞⎟⎟⎠

1
(d−1)

(︂
γ

2B

)︂ 1
d

And thus we have specified the “beta-grid” as mentioned in Definition 27.

6.8 Conclusion

We conclude by reporting two other observations that have come to light from the experiments above.
Firstly, We have also done experiments (not reported here) where we have used the CIFAR data
as a binary classification task and there we observed that the angular deflection under training is
significantly lower than whats reported above for CIFAR−10. In such situations when this deflection
is lower the relative advantage of our bound over Neyshabur et al., 2017’s bound is even greater.
Secondly, We have additionally also observed that the maximum angle between A and any of the
Ais is typically 40 − 60% larger than the corresponding angular spread of the intial cluster i.e the
maximum angle between B and any of the Bis. Note that all the final cluster nets are approximately
of the same accuracy. Thus nets initialized close by to each other often seem to not end up as close

4If g is the grid point which is the required approximation to x i.e |x − g| ≤ x
d =⇒ x ∈

(︂
d

d+1 g, d
d−1 g

)︂
Since a ≤ g =⇒

2da
d2−1 ≤

(︂
d

d−1 − d
d+1

)︂
β̃. So 2da

(d2−1) is the smallest grid spacing that might be needed and hence the maximum number number

of grid points needed is (b−a)(d2−1)
2ad < (b−a)d

2a < bd
2a
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post-training even when trained to the same accuracy on the same data and using the same algorithm.
We believe that this dispersion behaviour of nets warrants further investigation.

Given the demonstrated advantages of our PAC-Bayesian bounds on neural nets we believe that
these observations deserve further investigation and being able to theoretically explain them and
incorporate them into the PAC-Bayesian framework might contribute towards getting even better
bounds.
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Appendix To Chapter 6

6.A The KL upperbounds

The normal distributions NA,σ2 as stated in definition 24 can be made explicit as,

log N(A,σ2)(w) = −1
2

[︃∥w − A∥2

σ2 + dim(A) log
(︂

2πσ2)
)︂]︃

(6.33)

Theorem 6.A.1. Assume being given distributions f and GM on Rn. f is Gaussian and has mean
µ⃗ = A and covariance Σ f = σ2

f In for some σf > 0. While GM is a Gaussian mixture with k1 Gaussians

{ fGM,r}r=1,...,k1 with weights, {aGM,i ≥ 0}i=1,..,k1 and ∑k1
i=1 aGM,i = 1 s.t the k1 components have means

as {µ⃗GM,r = Br}r=1,...,k1 and the covariance matrix of the components as ΣGM := σ2
GM In for some

σ2 > 0. Then we have the following upperbound,

KL( f ∥GM) ≤ n
2

(︄
σ2

f

σ2
GM

− 1

)︄
+ n log(

σGM

σf
)− log

[︄
k1

∑
r=1

aGM,re
− 1

2σ2
GM

∥A−Br∥2
]︄

Proof. We recall the following theorem,

Theorem 6.A.2 (Durrieu-Thiran-Kelly (ICASSP 2012)). Given the definitions of f and GM as above
but with Σ f and ΣGM being generic we have as upperbound for the KL divergence between the two
distributions,

KL( f ∥GM) ≤
(︄

H( f ) + log
exp(L f ( f ))

∑k2
r=1 aGM,re−DKL( f ∥ fGM,r)

)︄
,

where H( f ) := E [− log( f (x))] =: −L f ( f )

Now using the definition of µGM,r and ΣGM and known expression for the KL divergence between 2
Gaussians the upperbound given above simplifies as,

KL( f ∥GM) ≤ − log

[︄
k1

∑
r=1

aGM,re−KL( f ∥ fGM,r)

]︄

= − log

⎡⎣ k1

∑
r=1

aGM,r

⌜⃓⃓⎷ en det(Σ f )

det(ΣGM)det(eΣ−1
GMΣ f )

e−
1
2 (µ⃗−µ⃗GM,r)

TΣ−1
GM(µ⃗−µ⃗GM,r)

⎤⎦
Now we recall the definitions of A, {Br}r=1,...,k1 , σf and σGM to further simplify the above to get,
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KL( f ∥GM) ≤ − log

⌜⃓⃓⃓
⎷ en det(σ2

f I)

det(σ2
GM I)det

(︂
e(σ

2
GM I)−1(σ2

f I)
)︂ − log

[︄
k2

∑
r=1

aGM,re−
1
2 (A−Br)T(σ2

GM I)−1(A−Br)

]︄

= log

⌜⃓⃓⃓
⎷det(σ2

GM I)det
(︂

e(σ
2
GM I)−1(σ2

f I)
)︂

en det(σ2
f I)

− log

[︄
k1

∑
r=1

aGM,re
− 1

2σ2
GM

∥A−Br∥2
]︄

≤ n
2

(︄
σ2

f

σ2
GM

− 1

)︄
+ n log(

σGM

σf
)− log

[︄
k1

∑
r=1

aGM,re
− 1

2σ2
GM

∥A−Br∥2
]︄

And thus the required theorem is proven.

6.B Data-Dependent Priors

We continue in the same notation as used in Theorem 6.1.1 and we prove the following theorem.

Theorem 6.B.1. Suppose we have K prior distributions {πi}i=1,...,K s.t for some δ > 0 the following
inequality holds for each πi

PS∼Dm(Z)

[︄
∀Q Eh∼Q[L(h)] ≤ Eh∼Q[L̂(h)] +

√︄
KL(Q∥πi) + log m

δ

m − 1

]︄
≥ 1 − δ. (6.34)

Then,

PS∼Dm(Z)

[︄
∀i ∈ {1, . . . , K} ∀Q Eh∼Q[L(h)] ≤ Eh∼Q[L̂(h)] +

√︄
KL(Q∥πi) + log m

δ

m − 1

]︄
≥ 1 − Kδ. (6.35)

Proof. Let f be a real-valued function on the space of distributions and data sets. Let EQ = {S |
f (S, Q) > 0}. And note that ∩QEQ = {S | ∀Q f (S, Q) > 0}. Therefore PS[S | ∀Q f (S, Q) > 0] =
PS[∩QEQ] regardless of the distribution on S.

Consider K functions f1, . . . , fK s.t for some δ ∈ [0, 1] we have,

∀i ∈ {1, . . . , K} PS[S | ∀Q fi(S, Q) > 0] ≥ 1 − δ

Now we define the events Ei,Q = {S | fi(S, Q) > 0} for each i ∈ {1, . . . , K}. Thus we can deduce the
following:

∀i ∈ {1, . . . , K} PS[S | ∀Q fi(S, Q) > 0] ≥ 1 − δ

=⇒ ∀i ∈ {1, . . . , K} PS[∩QEi,Q] ≥ 1 − δ (as discussed in the beginning of the proof)
=⇒ ∀i ∈ {1, . . . , K} PS[∪QEc

i,Q] ≤ δ

=⇒ PS[∪K
i=1

(︂
∪Q EC

i,Q

)︂
] ≤ Kδ

=⇒ PS[∩K
i=1 ∩Q Ei,Q] ≥ 1 − Kδ

=⇒ PS[S | ∀Q ∀i ∈ {1, . . . , K} fi(S, Q) > 0] ≥ 1 − Kδ
(6.36)

Now we use fi(S, Q)=Eh∼Q[L̂(h)]−Eh∼Q[L(h)]+
√︂

KL(Q∥πi)+log m
δ

m−1 in equation (6.36) and use condi-
tion (6.34) to get result (6.35).

The above theorem encapsulates what is conventionally called as using a “data-dependent prior”.
This is because if we can construct a list of K priors and work with δ < 1

K then the above theorem
lets us choose in a data (i.e the training data S) dependent way not just the posterior distribution Q
but also the prior πi from the list and still assures us a high probability upperbound on the difference
between the true risk and the empirical risk of the stochastic classifier.
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6.C Proof of Theorem 6.1.2

Proof. Given a predictor weight w, for explicitness we will denote by µw and µ̃w what were called µ
and µ̃ in the theorem statement.

We will first isolate its set of “good” perturbations i.e we define the following set Sw as,

Sw =

{︃
w + u | max

x∈S
∥ fw+u(x)− fw(x)∥∞ <

γ

4

}︃

Corresponding to the predictor weight w, let µ′
w be a distribution on the weights s.t the required

condition holds i.e,

Pu∼µ′
w

[︃
max
x∈S

∥ fw+u(x)− fw(x)∥∞ <
γ

4

]︃
≥ 1

2

Let w + u ∼ µw when u ∼ µ′
w.

Now we define the quantity, Z(µw) := Pw+u∼µw [w + u ∈ Sw]. From the definition it follows that,
Z(µw) ≥ 1

2 . Now let us define another distribution µ̃w over the set of predictor’s weights s.t the p.d.fs
are related as follows (in the following we overload the notation of the distribution to also denote the
corresponding p.d.f),

µ̃w(x) =
µw(x)
Z(µw)

δx∈Sw

Thus µ̃w is supported on Sw. From the above definition it follows that if w+ ũ ∼ µ̃w then maxx∈S∥ fw+ũ(x)−
fw(x)∥∞ < γ

4 which is equivalent to maxi∈{1,2,..,k},x∈S∥ fw+ũ(x)[i]− fw(x)[i]∥ < γ
4 . This in turn im-

plies,

max
i,j∈{1,2,..,k},x∈S

∥( fw+ũ(x)[i]− fw+ũ(x)[j])− ( fw(x)[i]− fw(x)[j])∥ <
γ

2
(6.37)

Which in turn implies the following inequality, 5

L̂0( fw+ũ) ≤ L̂γ/2( fw) (6.38)

Similar to µ̃ we define the following,

µ̃c
w(x) =

1
1 − Z(µw)

µw(x)δx∈Sc
w

5We give the proof in this footnote for convenience. Let j be arbitrary, let i = arg maxi ̸=j fw+ũ(x)[i]. Let
Sj = {x | fw(x)[i] − fw(x)[j] ≥ −γ/2}, and S′

j = {x | fw+ũ(x)[i] − fw+ũ(x)[j] ≥ 0}. Clearly S′
j ⊆ Sj because

fw+ũ(x)[i]− fw+ũ(x)[j] ≥ 0 =⇒ fw(x)[i]− fw(x)[j] ≥ −γ/2 from (6.37).

Now recall that we can write, Lγ/2( fw) = Ey
[︁
Ex[1( fw(x)[y] ≤ γ/2 + maxi ̸=y fw(x)[i]) | y] and L0( fw+ũ) =

Ey
[︁
Ex[1( fw+ũ(x)[y] ≤ maxi ̸=y fw+ũ(x)[i]) | y] Hence equation (6.38) follows by noting that the support of the indica-

tor function in L0( fw+ũ) is contained in the support of the indicator function in Lγ/2( fw) because S′
j ⊆ Sj.
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Thus substituting the expressions for µ̃w and µ̃c
w for the given prior P we have,

KL(µw | P)

=
∫︂

µw log
(︃

P
µw

)︃
=
∫︂

Sw
µw log

(︃
P

µw

)︃
+
∫︂

Sc
w

µw log
(︃

P
µw

)︃
=
∫︂

Z(µw)µ̃w log
(︃

P
Z(µw)µ̃w

)︃
+
∫︂
(1 − Z(µw))µ̃c

w log
(︃

P
(1 − Z(µw))µ̃c

w

)︃
= Z(µw)

[︃
− log Z(µw) +

∫︂
µ̃w log

(︃
P

µ̃w

)︃]︃
+ (1 − Z(µw))

[︃
− log(1 − Z(µw)) +

∫︂
µ̃c

w log
(︃

P
µ̃c

w

)︃]︃
= Z(µw)KL(µ̃w | P) + (1 − Z(µw))KL(µ̃c

w | P)
− Z(µw) log Z(µw)− (1 − Z(µw)) log(1 − Z(µw))

=⇒ KL(µ̃w | P) =
1

Z(µw)

{︃
KL(µw | P)− (1 − Z(µw))KL(µ̃c

w | P)

+ Z(µw) log Z(µw) + (1 − Z(µw)) log(1 − Z(µw))

}︃
(6.39)

We recall that for any Z ∈ [ 1
2 , 1] we have, |Z log Z + (1 − Z) log(1 − Z)| ≤ 1 and KL(µ̃c

w∥P) ≥ 0.
Thus we have,

KL(µ̃w∥P) ≤ 1
Z(µw)

(KL(µw∥P) + 1) ≤ 2 (KL(µw∥P) + 1) (6.40)

We remember that above we had sampled the weights of the perturbed net fw+ũ as w + ũ ∼ µ̃w.
Now we write the highly likely event guaranteed by PAC-Bayesian bounds in Theorem 6.1.1, for
the margin loss L γ

2
evaluated on the predictor fw for some prior P and a (data dependent) choice of

posterior µ̃w. Further we invoke equation (6.38) and (6.40) on that, to get the following,

Ew+ũ∼µ̃w
[L0( fw+ũ)] ≤ Ew+ũ∼µ̃w

[L̂0( fw+ũ)] +

√︄
KL(µ̃w||P) + log m

δ

2(m − 1)

≤ L̂γ/2( fw) +

√︄
KL(µ̃w||P) + log m

δ

2(m − 1)

≤ L̂γ/2( fw) +

√︄
2KL(µw||P) + 2 + log m

δ

2(m − 1)
= L̂γ/2( fw) +

√︄
KL(µw||P) + 1 + 1

2 log m
δ

m − 1

≤ L̂γ/2( fw) +

√︄
KL(µw||P) + log 3m

δ

m − 1

where in the last line we have used, 1 + 1
2 log m

δ < 1 + log m
δ < log 3 + log m

δ
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6.D Proof of Theorem 6.1.3

Proof. Firstly we observe the following Theorem 6.D.1 which is a slight variation of a lemma in
Neyshabur et al., 2017. The proof of Theorem 6.D.1 follows from exactly the same arguments as
was needed to prove Theorem 6.1.2.

Theorem 6.D.1. Let fw : χ → Rk be any predictor with parameters w and lets use the margin loss
as defined in equation 23. Let P be any distribution (the “data-independent prior”) on the space of
parameters of f and D be a distribution on χ. Let it be true that for some γ > 0, we know of distri-
butions µ′

w and µw (depending on the weight w of the given predictor) on the space of parameters of
the predictor s.t,

Pu∼µ′
w

[︄
sup
x∈χ

∥ fw+u(x)− fw(x)∥∞ <
γ

4

]︄
≥ 1

2
and w + u ∼ µw (6.41)

Then for any δ ∈ [0, 1] the following guarantee holds,

Pχ∼Dm(χ)

[︄
∀w and corresponding µw s.t condition 6.41 holds,∃ µ̃w s.t

Ew+ũ∼µ̃w
[L0( fw+ũ)] ≤ L̂ γ

2
( fw) +

√︄
KL(µw||P) + log 3m

δ

m − 1

]︄
≥ 1 − δ (6.42)

The following Theorem 6.D.2 from Neyshabur et al., 2017 is a bound for neural net functions under
controlled perturbations and we state it without proof.

Theorem 6.D.2 (Neural net perturbation bound of Neyshabur et al., 2017). Let us be given a depth
d neural net, fw, with width h and weight vector w which is mapping, Bn(B) → Rk where Bn(B)
is the radius B ball around the origin in Rn. Now cosider a perturbation on the weights given by,
u = vec({Uℓ}d

ℓ=1) s.t ∥Uℓ∥2 ≤ 1
d∥Wℓ∥2. Then we have for all x ∈ Bn(B),

∥ fw+u(x)− fw(x)∥2 ≤ eB(
d

∏
ℓ=1

∥Wℓ∥2)
d

∑
ℓ=1

∥Uℓ∥2

∥Wℓ∥2
(6.43)

Now, for some σ > 0 consider the random variable u ∼ N(0, σ2 I) where u is imagined as the vector
of the weights of the neural net f in the above theorem. Let {Uℓ ∈ Rh×h}d

ℓ=1 be the matrices of the
neural net corresponding to u.

We can define matrices {Bp ∈ Rh×h | p = 1, . . . , h2} s.t each Bp has σ in an unique entry of it and all

other entries are 0. Then it follows that as random matrices, Uℓ = ∑h2

p=1 γpBp with γp ∼ N(0, 1). We

note that ∥∑h2

p=1 BpB⊤
p ∥ = h · σ2 since h is the largest eigenvalue of an all ones h−dimensional square

matrix. Now we invoke Corollary 4.2 of Tropp, 2012 here to get for any t > 0,

PUℓ
[∥Ui,ℓ∥2 > t] ≤ 2he−

t2

2hσ2 (6.44)

Using union bound for the d layer matrices of u we get,

P{Uℓ∼N(0,σ2 Ih×h)}ℓ=1,...,d
[∃i s.t ∥Uℓ∥ > t] ≤ 2dhe−

t2

2hσ2

This is equivalent to,
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P{Uℓ∼N(0,σ2 Ih×h)}ℓ=1,...,d
[∀i∥Uℓ∥ ≤ t] ≥ 1 − 2dhe−

t2

2hσ2 (6.45)

If t = σ
√︁

2h log(4dh) then 1 − 2dhe−
t2

2hσ2 = 1
2 and so we have,

P{Uℓ∼N(0,σ2 Ih×h)}ℓ=1,...,d
[∀i∥Uℓ∥ ≤ σ

√︂
2h log(4dh)] ≥ 1

2
(6.46)

Now corresponding to the given predictor weight w, let βd = ∏d
ℓ=1∥Wℓ∥. For the kind of nets we

consider i.e the ones with no bias vectors in any of the layers it follows from the definition of β that
the function computed by the net remains invariant if the layer matrices Wi are replaced by β

∥Wi∥Wi.
And we see that the spectral norm is identically β for each layer in this net with modified wights. So
we can assume without loss of generality that ∀i ∥Wi∥ = β. By using this uniform norm assumption
along with the assumption that

If
σ
√︂

2h log(4dh) ≤ β

d
(6.47)

then we have,

1
2
≤ P{Uℓ∼N(0,σ2 Ih×h)}ℓ=1,...,d

[∀i∥Uℓ∥ ≤ σ
√︂

2h log(4dh)]

≤ P

[︄
∥ fw+u(x)− fw(x)∥ ≤ eBβd−1

d

∑
ℓ=1

∥Uℓ∥
]︄

(6.48)

≤ P

[︃
∥ fw+u(x)− fw(x)∥ ≤ eBdβd−1σ

√︂
2h log(4dh)

]︃
(6.49)

Note that the assumption (6.47) is required even in the proof by Neyshabur et al., 2017 even though
it is omitted there.

We will choose the prior – used in the PAC-Bayes bound – from a finite set of distributions, {πi =
N0,σ2(βi˜ )

}K
i=1, in a data dependent manner. Given β corresponding to the trained net fw, suppose

∃β̃ ∈ {βi˜ }K
i=1 such that |β − β̃| ≤ β

d . |β − β̃| ≤ β
d also implies that βd−1

e ≤ β̃
d−1 ≤ eβd−1. Furthermore,

if σ satisfies the inequalities 6.50a then the condition 6.47 will hold.

σ
√︂

2h log(4dh) ≤ β̃

de
1

d−1
(6.50a)

e2Bdβ̃
d−1

σ
√︂

2h log(4dh) ≤ γ

4
(6.50b)

And from equations (6.48,6.50b) we get that

1
2
≤ P

[︂
∥ fw+u(x)− fw(x)∥ ≤ γ

4

]︂
.

Therefore the condition 6.41 in Theorem 6.D.1 is satisfied. Finally we deduce from (6.50) that the
largest value of σ in terms of β̃ is,

σ(β̃) := min

{︄
γ

4e2Bdβ̃
d−1√︁2h log(4dh)

,
β̃

de
1

d−1
√︁

2h log(4dh)

}︄
(6.51)

Note that for a given neural net weight w (and hence the value β) the inequality event in 6.42 holds
trivially in two conditions:
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1. When β ≤
(︂

γ
2B

)︂1/d
this implies ∥ fw(x)∥ ≤ γ

2 which implies L̂γ = 1 by definition. Therefore
(6.42) holds trivially.

2. From the local sensitivity analysis done above it follows that we can invoke the above theorem
with P = N(0, σ(β̃)2 I) and µw = N(w, σ(β̃)2 I). Which gives us the bound

KL(µw∥P) ≤ ∥w∥2

2σ(β̃)2
=

∑d
ℓ=1∥Wℓ∥2

F
2σ(β̃)2

. (6.52)

Note that in terms of β (which can be directly read-off from the given net fw in Theorem 6.1.3)

we have σ(β̃) ≥ min

{︄
γ

4e3Bdβd−1
√

2h log(4dh)
, β

de
2

d−1
√

2h log(4dh)

}︄
=

β exp(−2/(d−1))
d
√

2h log(4dh)
min

{︄
γ

4e3− 2
d−1 Bβd

, 1

}︄
.

Therefore KL(µw∥P) ≤ 1
2

∑d
ℓ=1∥Wℓ∥2

F
β2

2d2h log(4dh)
exp(− 4

(d−1) )
1

min

⎧⎨⎩ γ2

42e
6− 4

d−1 B2β2d
,1

⎫⎬⎭
. This upper bound on KL

leads to the following upperbound on the square-root term in equation 6.42,

⌜⃓⃓⃓
⎷⃓∑d

ℓ=1∥Wℓ∥2
F

(m − 1)β2
d2h log(4dh)
exp(− 4

(d−1) )

1

min

{︄
γ2

42e6− 4
d−1 B2β2d

, 1

}︄ +
1

m − 1
log

3m
δ

We note that for any d, h ≥ 1 we have (a) by A.M-G.M inequality ∑d
ℓ=1∥Wℓ∥2

F
β2 ≥ d ≥ 1 and (b)

exp( 4
(d−1) )d

2h log(4dh) > 1 (which is obvious on taking logarithm of the LHS). Therefore a suf-

ficient condition for quantity above to be greater than 1 is that we have, min

⎧⎨⎩1,

(︄
γ

4·B·βde3− 2
d−1

)︄2
⎫⎬⎭ ≤

1
m−1 . And a sufficient condition for this to be true is that, β ≥

(︂ √
m−1γ

4 exp(3−2/(d−1))B

)︂1/d
.

From the above two points it follows that it suffices to prove (6.3) for,

β ∈
[︄(︂ γ

2B

)︂1/d
,
(︂ √

m − 1γ

4 exp(3 − 2/(d − 1))B

)︂1/d
]︄

.

We note that if we want a grid on the interval [a, b] s.t for every value x ∈ [a, b] there is a grid-point g
s.t |x − g| ≤ x

d then a grid size of bd
2a suffices. 6 Hence a grid of the following size K suffices for us,

K =
d
2
×
(︂ √

m − 1
2 exp(3 − 2/(d − 1))

)︂1/d

Thus the theorem we set out to prove follows by invoking Theorem 6.B.1 with the K computed above
and recognizing that the set {πi} indexed by i there is our set {N(0,σ(β̃)2 I)} indexed by the grid point β̃

here, Q there is our µw here and the equation 6.52 above is a bound on the term KL(Q∥πi) there.

6If g is the grid point which is the required approximation to x i.e |x − g| ≤ x
d =⇒ x ∈

(︂
d

d+1 g, d
d−1 g

)︂
Since a ≤ g =⇒

2da
d2−1 ≤

(︂
d

d−1 − d
d+1

)︂
β̃. So 2da

(d2−1) is the smallest grid spacing that might be needed and hence the maximum number number

of grid points needed is (b−a)(d2−1)
2ad < (b−a)d

2a < bd
2a
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6.E The ϵ − γ lowerbound scatter plots from the experiments
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FIGURE 6.E.1: Scatter plots of the lowerbounds on ϵ and γ (as given in definition 26)
while varying the depth of the net being trained on the CIFAR-10(10 trials/seeds for

each)
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FIGURE 6.E.2: Scatter plots of the lowerbounds on ϵ and γ (as given in definition 26) for
varying depth d nets trained on the the synthetic dataset for different cluster separation

parameter parameter a (10 trials/seeds for each)
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6.F KDE of the angular deviation during training on the synthetic
dataset
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Y-axis shows the probability density function of the gaussian kernel density estimate.
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Melis, Gábor, Chris Dyer, and Phil Blunsom (2017). “On the state of the art of evaluation in neural

language models”. In: arXiv preprint arXiv:1707.05589.
Moitra, Ankur and Gregory Valiant (2010). “Settling the polynomial learnability of mixtures of gaus-

sians”. In: Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on. IEEE,
pp. 93–102.

Montufar, Guido F. et al. (2014). “On the number of linear regions of deep neural networks”. In:
Advances in neural information processing systems, pp. 2924–2932.

Mou, Wenlong et al. (2018). “Generalization Bounds of SGLD for Non-convex Learning: Two Theo-
retical Viewpoints”. In: Conference On Learning Theory, pp. 605–638.

Mukherjee, Anirbit and Ramchandran Muthukumar (2020). “Guarantees on learning depth-2 neural
networks under a data-poisoning attack”. In: arXiv preprint arXiv:2005.01699.

Nagarajan, Vaishnavh and J Zico Kolter (2019a). “Generalization in deep networks: The role of dis-
tance from initialization”. In: arXiv preprint arXiv:1901.01672.

Nagarajan, Vaishnavh and Zico Kolter (2019b). “Deterministic PAC-Bayesian generalization bounds
for deep networks via generalizing noise-resilience”. In: International Conference on Learning Rep-
resentations. URL: https://openreview.net/forum?id=Hygn2o0qKX.

Neal, Radford M (1996). “Priors for infinite networks”. In: Bayesian Learning for Neural Networks.
Springer, pp. 29–53.

Nesterov, Yurii (1983). “A method of solving a convex programming problem with convergence rate
O (1/k2)”. In: Soviet Mathematics Doklady. Vol. 27. 2, pp. 372–376.

Neyshabur, Behnam et al. (2017). “A pac-bayesian approach to spectrally-normalized margin bounds
for neural networks”. In: arXiv preprint arXiv:1707.09564.

Ng, Andrew (2011). “Sparse autoencoder”. In.
Nguyen, Thanh V, Raymond KW Wong, and Chinmay Hegde (2019). “On the dynamics of gradient

descent for autoencoders”. In: The 22nd International Conference on Artificial Intelligence and Statis-
tics, pp. 2858–2867.

Ochs, Peter (2016). “Local Convergence of the Heavy-ball Method and iPiano for Non-convex Opti-
mization”. In: arXiv preprint arXiv:1606.09070.

Olshausen, Bruno A and David J Field (1996). “Emergence of simple-cell receptive field properties by
learning a sparse code for natural images”. In: Nature 381.6583, p. 607.

— (1997). “Sparse coding with an overcomplete basis set: A strategy employed by V1?” In: Vision
research 37.23, pp. 3311–3325.

— (2005). “How close are we to understanding V1?” In: Neural computation 17.8, pp. 1665–1699.
O’Neill, Michael and Stephen J Wright (2017). “Behavior of accelerated gradient methods near critical

points of nonconvex problems”. In: arXiv preprint arXiv:1706.07993.
Pal, Sankar K and Sushmita Mitra (1992). “Multilayer perceptron, fuzzy sets, classifiaction”. In.
Pascanu, Razvan, Guido Montufar, and Yoshua Bengio (2013). “On the number of response regions of

deep feed forward networks with piece-wise linear activations”. In: arXiv preprint arXiv:1312.6098.
Paterson, Michael S and Uri Zwick (1993). “Shrinkage of de Morgan formulae under restriction”. In:

Random Structures & Algorithms 4.2, pp. 135–150.
Polyak, Boris T (1987). “Introduction to optimization. Translations series in mathematics and engi-

neering”. In: Optimization Software.
Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representation learning with

deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434.

152

https://openreview.net/forum?id=Hygn2o0qKX


Bibliography

Raghu, Maithra et al. (2016). “On the expressive power of deep neural networks”. In: arXiv preprint
arXiv:1606.05336.

Raginsky, Maxim, Alexander Rakhlin, and Matus Telgarsky (2017). “Non-convex learning via Stochas-
tic Gradient Langevin Dynamics: a nonasymptotic analysis”. In: Conference on Learning Theory,
pp. 1674–1703.

Rangamani, Akshay et al. (2017). “Critical Points Of An Autoencoder Can Provably Recover Sparsely
Used Overcomplete Dictionaries”. In: arXiv preprint arXiv:1708.03735.

Razborov, Alexander A. (1987). “Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition”. In: Mathematical Notes 41.4, pp. 333–338.

Razborov, Alexander A (1992). “On small depth threshold circuits”. In: Scandinavian Workshop on
Algorithm Theory. Springer, pp. 42–52.

Razborov, Alexander A and Alexander A Sherstov (2010). “The Sign-Rank of AC ˆ0”. In: SIAM Journal
on Computing 39.5, pp. 1833–1855.

Reddi, Sashank J, Satyen Kale, and Sanjiv Kumar (2018). “On the convergence of adam and beyond”.
In: International Conference on Learning Representations.

Rifai, Salah et al. (2011). “Contractive auto-encoders: Explicit invariance during feature extraction”.
In: Proceedings of the 28th international conference on machine learning (ICML-11), pp. 833–840.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information storage and organi-
zation in the brain.” In: Psychological review 65.6, p. 386.

Rossman, Benjamin (2008). “On the constant-depth complexity of k-clique”. In: Proceedings of the for-
tieth annual ACM symposium on Theory of computing. ACM, pp. 721–730.

Rossman, Benjamin, Rocco A. Servedio, and Li-Yang Tan (2015). “An average-case depth hierarchy
theorem for Boolean circuits”. In: Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on. IEEE, pp. 1030–1048.

Royden, H.L. and P.M. Fitzpatrick (2010). Real Analysis. Prentice Hall.
Safran, Itay and Ohad Shamir (2016). “Depth separation in relu networks for approximating smooth

non-linear functions”. In: arXiv preprint arXiv:1610.09887.
— (2017). “Depth-width tradeoffs in approximating natural functions with neural networks”. In:

International Conference on Machine Learning, pp. 2979–2987.
Salakhutdinov, Ruslan and Geoffrey E. Hinton (2009). “Deep Boltzmann Machines.” In: International

Conference on Artificial Intelligence and Statistics (AISTATS). Vol. 1, p. 3.
Saptharishi, R. (2014). A survey of lower bounds in arithmetic circuit complexity.
Scott, David W (2015). Multivariate density estimation: theory, practice, and visualization. John Wiley &

Sons.
Sedghi, Hanie and Anima Anandkumar (2014). “Provable methods for training neural networks with

sparse connectivity”. In: arXiv preprint arXiv:1412.2693.
Sermanet, Pierre et al. (2014). “OverFeat: Integrated Recognition, Localization and Detection us-

ing Convolutional Networks”. In: International Conference on Learning Representations (ICLR 2014).
arXiv preprint arXiv:1312.6229.

Serra, Thiago, Christian Tjandraatmadja, and Srikumar Ramalingam (2017). “Bounding and counting
linear regions of deep neural networks”. In: arXiv preprint arXiv:1711.02114.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory to algo-
rithms. Cambridge university press.

Shamir, Ohad (2016). “Distribution-Specific Hardness of Learning Neural Networks”. In: arXiv preprint
arXiv:1609.01037.

Sherstov, Alexander A (2007). “Powering requires threshold depth 3”. In: Information processing letters
102.2-3, pp. 104–107.

— (2009). “Separating ACˆ0 from Depth-2 Majority Circuits”. In: SIAM Journal on Computing 38.6,
pp. 2113–2129.

— (2011). “The unbounded-error communication complexity of symmetric functions”. In: Combina-
torica 31.5, pp. 583–614.

Shpilka, Amir and Amir Yehudayoff (2010). “Arithmetic circuits: A survey of recent results and open
questions”. In: Foundations and Trends® in Theoretical Computer Science 5.3–4, pp. 207–388.

Silver, David et al. (2017). “Mastering the game of Go without human knowledge”. In: Nature 550.7676,
pp. 354–359.

Silver, David et al. (2018). “A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play”. In: Science 362.6419, pp. 1140–1144.

153



Bibliography

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556.

Siu, Kai-Yeung, Vwani P Roychowdhury, and Thomas Kailath (1994). “Rational approximation tech-
niques for analysis of neural networks”. In: IEEE Transactions on Information Theory 40.2, pp. 455–
466.

Smolensky, Roman (1987). “Algebraic methods in the theory of lower bounds for Boolean circuit
complexity”. In: Proceedings of the nineteenth annual ACM symposium on Theory of computing. ACM,
pp. 77–82.

Soltanolkotabi, Mahdi (2017). “Learning relus via gradient descent”. In: Advances in neural information
processing systems, pp. 2007–2017.

Spielman, Daniel A, Huan Wang, and John Wright (2012). “Exact Recovery of Sparsely-Used Dictio-
naries.” In: COLT, pp. 37–1.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks from overfitting.”
In: Journal of Machine Learning Research 15.1, pp. 1929–1958.
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