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Abstract

In recent years, deep artificial neural networks (including recurrent ones) have won numerous
contests in pattern recognition and machine learning. This historical survey compactly summarises
relevant work, much of it from the previous millennium. Shallow and deep learners are distin-
guished by the depth of their credit assignment paths, which are chains of possibly learnable, causal
links between actions and effects. I review deep supervised learning (also recapitulating the history
of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation,
and indirect search for short programs encoding deep and large networks.
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Preface

This is the preprint of an invited Deep Learning (DL) overview. One of its goals is to assign credit
to those who contributed to the present state of the art. I acknowledge the limitations of attempting
to achieve this goal. The DL research community itself may be viewed as a continually evolving,
deep network of scientists who have influenced each other in complex ways. Starting from recent DL
results, I tried to trace back the origins of relevant ideas through the past half century and beyond,
sometimes using “local search” to follow citations of citations backwards in time. Since not all DL
publications properly acknowledge earlier relevant work, additional global search strategies were em-
ployed, aided by consulting numerous neural network experts. As a result, the present preprint mostly
consists of references. Nevertheless, through an expert selection bias I may have missed important
work. A related bias was surely introduced by my special familiarity with the work of my own DL
research group in the past quarter-century. For these reasons, this work should be viewed as merely a
snapshot of an ongoing credit assignment process. To help improve it, please do not hesitate to send
corrections and suggestions to juergen@idsia.ch.
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1 Introduction to Deep Learning (DL) in Neural Networks (NNs)
Which modifiable components of a learning system are responsible for its success or failure? What
changes to them improve performance? This has been called the fundamental credit assignment prob-
lem (Minsky, 1963). There are general credit assignment methods for universal problem solvers that
are time-optimal in various theoretical senses (Sec. 6.8). The present survey, however, will focus on
the narrower, but now commercially important, subfield of Deep Learning (DL) in Artificial Neural
Networks (NNs).

A standard neural network (NN) consists of many simple, connected processors called neurons,
each producing a sequence of real-valued activations. Input neurons get activated through sensors per-
ceiving the environment, other neurons get activated through weighted connections from previously
active neurons (details in Sec. 2). Some neurons may influence the environment by triggering actions.
Learning or credit assignment is about finding weights that make the NN exhibit desired behavior,
such as driving a car. Depending on the problem and how the neurons are connected, such behavior
may require long causal chains of computational stages (Sec. 3), where each stage transforms (of-
ten in a non-linear way) the aggregate activation of the network. Deep Learning is about accurately
assigning credit across many such stages.

Shallow NN-like models with few such stages have been around for many decades if not centuries
(Sec. 5.1). Models with several successive nonlinear layers of neurons date back at least to the 1960s
(Sec. 5.3) and 1970s (Sec. 5.5). An efficient gradient descent method for teacher-based Supervised
Learning (SL) in discrete, differentiable networks of arbitrary depth called backpropagation (BP) was
developed in the 1960s and 1970s, and applied to NNs in 1981 (Sec. 5.5). BP-based training of deep
NNs with many layers, however, had been found to be difficult in practice by the late 1980s (Sec. 5.6),
and had become an explicit research subject by the early 1990s (Sec. 5.9). DL became practically fea-
sible to some extent through the help of Unsupervised Learning (UL), e.g., Sec. 5.10 (1991), Sec. 5.15
(2006). The 1990s and 2000s also saw many improvements of purely supervised DL (Sec. 5). In the
new millennium, deep NNs have finally attracted wide-spread attention, mainly by outperforming al-
ternative machine learning methods such as kernel machines (Vapnik, 1995; Schölkopf et al., 1998)
in numerous important applications. In fact, since 2009, supervised deep NNs have won many official
international pattern recognition competitions (e.g., Sec. 5.17, 5.19, 5.21, 5.22), achieving the first
superhuman visual pattern recognition results in limited domains (Sec. 5.19, 2011). Deep NNs also
have become relevant for the more general field of Reinforcement Learning (RL) where there is no
supervising teacher (Sec. 6).

Both feedforward (acyclic) NNs (FNNs) and recurrent (cyclic) NNs (RNNs) have won contests
(Sec. 5.12, 5.14, 5.17, 5.19, 5.21, 5.22). In a sense, RNNs are the deepest of all NNs (Sec. 3)—they
are general computers more powerful than FNNs, and can in principle create and process memories
of arbitrary sequences of input patterns (e.g., Siegelmann and Sontag, 1991; Schmidhuber, 1990a).
Unlike traditional methods for automatic sequential program synthesis (e.g., Waldinger and Lee, 1969;
Balzer, 1985; Soloway, 1986; Deville and Lau, 1994), RNNs can learn programs that mix sequential
and parallel information processing in a natural and efficient way, exploiting the massive parallelism
viewed as crucial for sustaining the rapid decline of computation cost observed over the past 75 years.

The rest of this paper is structured as follows. Sec. 2 introduces a compact, event-oriented notation
that is simple yet general enough to accommodate both FNNs and RNNs. Sec. 3 introduces the
concept of Credit Assignment Paths (CAPs) to measure whether learning in a given NN application is
of the deep or shallow type. Sec. 4 lists recurring themes of DL in SL, UL, and RL. Sec. 5 focuses
on SL and UL, and on how UL can facilitate SL, although pure SL has become dominant in recent
competitions (Sec. 5.17–5.23). Sec. 5 is arranged in a historical timeline format with subsections on
important inspirations and technical contributions. Sec. 6 on deep RL discusses traditional Dynamic
Programming (DP)-based RL combined with gradient-based search techniques for SL or UL in deep
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NNs, as well as general methods for direct and indirect search in the weight space of deep FNNs and
RNNs, including successful policy gradient and evolutionary methods.

2 Event-Oriented Notation for Activation Spreading in NNs
Throughout this paper, let i, j, k, t, p, q, r denote positive integer variables assuming ranges implicit
in the given contexts. Let n,m, T denote positive integer constants.

An NN’s topology may change over time (e.g., Sec. 5.3, 5.6.3). At any given moment, it can
be described as a finite subset of units (or nodes or neurons) N = {u1, u2, . . . , } and a finite set
H ✓ N⇥N of directed edges or connections between nodes. FNNs are acyclic graphs, RNNs cyclic.
The first (input) layer is the set of input units, a subset of N . In FNNs, the k-th layer (k > 1) is the set
of all nodes u 2 N such that there is an edge path of length k � 1 (but no longer path) between some
input unit and u. There may be shortcut connections between distant layers. In sequence-processing,
fully connected RNNs, all units have connections to all non-input units.

The NN’s behavior or program is determined by a set of real-valued, possibly modifiable, param-
eters or weights w

i

(i = 1, . . . , n). We now focus on a single finite episode or epoch of information
processing and activation spreading, without learning through weight changes. The following slightly
unconventional notation is designed to compactly describe what is happening during the runtime of
the system.

During an episode, there is a partially causal sequence x
t

(t = 1, . . . , T ) of real values that I call
events. Each x

t

is either an input set by the environment, or the activation of a unit that may directly
depend on other x

k

(k < t) through a current NN topology-dependent set in
t

of indices k representing
incoming causal connections or links. Let the function v encode topology information and map such
event index pairs (k, t) to weight indices. For example, in the non-input case we may have x

t

=
f
t

(net
t

) with real-valued net
t

=
P

k2int
x
k

w
v(k,t) (additive case) or net

t

=
Q

k2int
x
k

w
v(k,t)

(multiplicative case), where f
t

is a typically nonlinear real-valued activation function such as tanh.
In many recent competition-winning NNs (Sec. 5.19, 5.21, 5.22) there also are events of the type
x
t

= max
k2int(xk

); some network types may also use complex polynomial activation functions
(Sec. 5.3). x

t

may directly affect certain x
k

(k > t) through outgoing connections or links represented
through a current set out

t

of indices k with t 2 in
k

. Some of the non-input events are called output
events.

Note that many of the x
t

may refer to different, time-varying activations of the same unit in
sequence-processing RNNs (e.g., Williams, 1989, “unfolding in time”), or also in FNNs sequentially
exposed to time-varying input patterns of a large training set encoded as input events. During an
episode, the same weight may get reused over and over again in topology-dependent ways, e.g., in
RNNs, or in convolutional NNs (Sec. 5.4, 5.8). I call this weight sharing across space and/or time.
Weight sharing may greatly reduce the NN’s descriptive complexity, which is the number of bits of
information required to describe the NN (Sec. 4.4).

In Supervised Learning (SL), certain NN output events x
t

may be associated with teacher-given,
real-valued labels or targets d

t

yielding errors e
t

, e.g., e
t

= 1/2(x
t

�d
t

)2. A typical goal of supervised
NN training is to find weights that yield episodes with small total error E, the sum of all such e

t

. The
hope is that the NN will generalize well in later episodes, causing only small errors on previously
unseen sequences of input events. Many alternative error functions for SL and UL are possible.

SL assumes that input events are independent of earlier output events (which may affect the en-
vironment through actions causing subsequent perceptions). This assumption does not hold in the
broader fields of Sequential Decision Making and Reinforcement Learning (RL) (Kaelbling et al.,
1996; Sutton and Barto, 1998; Hutter, 2005; Wiering and van Otterlo, 2012) (Sec. 6). In RL, some
of the input events may encode real-valued reward signals given by the environment, and a typical
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goal is to find weights that yield episodes with a high sum of reward signals, through sequences of
appropriate output actions.

Sec. 5.5 will use the notation above to compactly describe a central algorithm of DL, namely,
backpropagation (BP) for supervised weight-sharing FNNs and RNNs. (FNNs may be viewed as
RNNs with certain fixed zero weights.) Sec. 6 will address the more general RL case.

3 Depth of Credit Assignment Paths (CAPs) and of Problems
To measure whether credit assignment in a given NN application is of the deep or shallow type, I
introduce the concept of Credit Assignment Paths or CAPs, which are chains of possibly causal links
between the events of Sec. 2, e.g., from input through hidden to output layers in FNNs, or through
transformations over time in RNNs.

Let us first focus on SL. Consider two events x
p

and x
q

(1  p < q  T ). Depending on the
application, they may have a Potential Direct Causal Connection (PDCC) expressed by the Boolean
predicate pdcc(p, q), which is true if and only if p 2 in

q

. Then the 2-element list (p, q) is defined to
be a CAP (a minimal one) from p to q. A learning algorithm may be allowed to change w

v(p,q) to
improve performance in future episodes.

More general, possibly indirect, Potential Causal Connections (PCC) are expressed by the re-
cursively defined Boolean predicate pcc(p, q), which in the SL case is true only if pdcc(p, q), or if
pcc(p, k) for some k and pdcc(k, q). In the latter case, appending q to any CAP from p to k yields a
CAP from p to q (this is a recursive definition, too). The set of such CAPs may be large but is finite.
Note that the same weight may affect many different PDCCs between successive events listed by a
given CAP, e.g., in the case of RNNs, or weight-sharing FNNs.

Suppose a CAP has the form (. . . , k, t, . . . , q), where k and t (possibly t = q) are the first succes-
sive elements with modifiable w

v(k,t). Then the length of the suffix list (t, . . . , q) is called the CAP’s
depth (which is 0 if there are no modifiable links at all). This depth limits how far backwards credit
assignment can move down the causal chain to find a modifiable weight.1

Suppose an episode and its event sequence x1, . . . , xT

satisfy a computable criterion used to
decide whether a given problem has been solved (e.g., total error E below some threshold). Then
the set of used weights is called a solution to the problem, and the depth of the deepest CAP within
the sequence is called the solution depth. There may be other solutions (yielding different event
sequences) with different depths. Given some fixed NN topology, the smallest depth of any solution
is called the problem depth.

Sometimes we also speak of the depth of an architecture: SL FNNs with fixed topology imply a
problem-independent maximal problem depth bounded by the number of non-input layers. Certain
SL RNNs with fixed weights for all connections except those to output units (Jaeger, 2001; Maass
et al., 2002; Jaeger, 2004; Schrauwen et al., 2007) have a maximal problem depth of 1, because only
the final links in the corresponding CAPs are modifiable. In general, however, RNNs may learn to
solve problems of potentially unlimited depth.

Note that the definitions above are solely based on the depths of causal chains, and agnostic to the
temporal distance between events. For example, shallow FNNs perceiving large “time windows” of
input events may correctly classify long input sequences through appropriate output events, and thus
solve shallow problems involving long time lags between relevant events.

At which problem depth does Shallow Learning end, and Deep Learning begin? Discussions with
DL experts have not yet yielded a conclusive response to this question. Instead of committing myself

1An alternative would be to count only modifiable links when measuring depth. In many typical NN applications this would
not make a difference, but in some it would, e.g., Sec. 6.1.
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to a precise answer, let me just define for the purposes of this overview: problems of depth > 10
require Very Deep Learning.

The difficulty of a problem may have little to do with its depth. Some NNs can quickly learn
to solve certain deep problems, e.g., through random weight guessing (Sec. 5.9) or other types of
direct search (Sec. 6.6) or indirect search (Sec. 6.7) in weight space, or through training an NN first
on shallow problems whose solutions may then generalize to deep problems, or through collapsing
sequences of (non)linear operations into a single (non)linear operation (but see an analysis of non-
trivial aspects of deep linear networks, Baldi and Hornik, 1994, Section B). In general, however,
finding an NN that precisely models a given training set is an NP-complete problem (Judd, 1990;
Blum and Rivest, 1992), also in the case of deep NNs (Sı́ma, 1994; de Souto et al., 1999; Windisch,
2005); compare a survey of negative results (Sı́ma, 2002, Section 1).

Above we have focused on SL. In the more general case of RL in unknown environments, pcc(p, q)
is also true if x

p

is an output event and x
q

any later input event—any action may affect the environment
and thus any later perception. (In the real world, the environment may even influence non-input events
computed on a physical hardware entangled with the entire universe, but this is ignored here.) It is
possible to model and replace such unmodifiable environmental PCCs through a part of the NN that
has already learned to predict (through some of its units) input events (including reward signals) from
former input events and actions (Sec. 6.1). Its weights are frozen, but can help to assign credit to
other, still modifiable weights used to compute actions (Sec. 6.1). This approach may lead to very
deep CAPs though.

Some DL research is about automatically rephrasing problems such that their depth is reduced
(Sec. 4). In particular, sometimes UL is used to make SL problems less deep, e.g., Sec. 5.10. Often
Dynamic Programming (Sec. 4.1) is used to facilitate certain traditional RL problems, e.g., Sec. 6.2.
Sec. 5 focuses on CAPs for SL, Sec. 6 on the more complex case of RL.

4 Recurring Themes of Deep Learning
4.1 Dynamic Programming for Supervised/Reinforcement Learning (SL/RL)
One recurring theme of DL is Dynamic Programming (DP) (Bellman, 1957), which can help to fa-
cilitate credit assignment under certain assumptions. For example, in SL NNs, backpropagation itself
can be viewed as a DP-derived method (Sec. 5.5). In traditional RL based on strong Markovian as-
sumptions, DP-derived methods can help to greatly reduce problem depth (Sec. 6.2). DP algorithms
are also essential for systems that combine concepts of NNs and graphical models, such as Hidden
Markov Models (HMMs) (Stratonovich, 1960; Baum and Petrie, 1966) and Expectation Maximization
(EM) (Dempster et al., 1977; Friedman et al., 2001), e.g., (Bottou, 1991; Bengio, 1991; Bourlard and
Morgan, 1994; Baldi and Chauvin, 1996; Jordan and Sejnowski, 2001; Bishop, 2006; Hastie et al.,
2009; Poon and Domingos, 2011; Dahl et al., 2012; Hinton et al., 2012a; Wu and Shao, 2014).

4.2 Unsupervised Learning (UL) Facilitating SL and RL
Another recurring theme is how UL can facilitate both SL (Sec. 5) and RL (Sec. 6). UL (Sec. 5.6.4)
is normally used to encode raw incoming data such as video or speech streams in a form that is more
convenient for subsequent goal-directed learning. In particular, codes that describe the original data in
a less redundant or more compact way can be fed into SL (Sec. 5.10, 5.15) or RL machines (Sec. 6.4),
whose search spaces may thus become smaller (and whose CAPs shallower) than those necessary for
dealing with the raw data. UL is closely connected to the topics of regularization and compression
(Sec. 4.4, 5.6.3).
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4.3 Learning Hierarchical Representations Through Deep SL, UL, RL
Many methods of Good Old-Fashioned Artificial Intelligence (GOFAI) (Nilsson, 1980) as well as
more recent approaches to AI (Russell et al., 1995) and Machine Learning (Mitchell, 1997) learn
hierarchies of more and more abstract data representations. For example, certain methods of syn-
tactic pattern recognition (Fu, 1977) such as grammar induction discover hierarchies of formal rules
to model observations. The partially (un)supervised Automated Mathematician / EURISKO (Lenat,
1983; Lenat and Brown, 1984) continually learns concepts by combining previously learnt concepts.
Such hierarchical representation learning (Ring, 1994; Bengio et al., 2013; Deng and Yu, 2014) is also
a recurring theme of DL NNs for SL (Sec. 5), UL-aided SL (Sec. 5.7, 5.10, 5.15), and hierarchical RL
(Sec. 6.5). Often, abstract hierarchical representations are natural by-products of data compression
(Sec. 4.4), e.g., Sec. 5.10.

4.4 Occam’s Razor: Compression and Minimum Description Length (MDL)
Occam’s razor favors simple solutions over complex ones. Given some programming language, the
principle of Minimum Description Length (MDL) can be used to measure the complexity of a so-
lution candidate by the length of the shortest program that computes it (e.g., Solomonoff, 1964;
Kolmogorov, 1965b; Chaitin, 1966; Wallace and Boulton, 1968; Levin, 1973a; Solomonoff, 1978;
Rissanen, 1986; Blumer et al., 1987; Li and Vitányi, 1997; Grünwald et al., 2005). Some methods
explicitly take into account program runtime (Allender, 1992; Watanabe, 1992; Schmidhuber, 1997,
2002); many consider only programs with constant runtime, written in non-universal programming
languages (e.g., Rissanen, 1986; Hinton and van Camp, 1993). In the NN case, the MDL princi-
ple suggests that low NN weight complexity corresponds to high NN probability in the Bayesian
view (e.g., MacKay, 1992; Buntine and Weigend, 1991; Neal, 1995; De Freitas, 2003), and to high
generalization performance (e.g., Baum and Haussler, 1989), without overfitting the training data.
Many methods have been proposed for regularizing NNs, that is, searching for solution-computing
but simple, low-complexity SL NNs (Sec. 5.6.3) and RL NNs (Sec. 6.7). This is closely related to
certain UL methods (Sec. 4.2, 5.6.4).

4.5 Fast Graphics Processing Units (GPUs) for DL in NNs
While the previous millennium saw several attempts at creating fast NN-specific hardware (e.g., Jackel
et al., 1990; Faggin, 1992; Ramacher et al., 1993; Widrow et al., 1994; Heemskerk, 1995; Korkin et al.,
1997; Urlbe, 1999), and at exploiting standard hardware (e.g., Anguita et al., 1994; Muller et al., 1995;
Anguita and Gomes, 1996), the new millennium brought a DL breakthrough in form of cheap, multi-
processor graphics cards or GPUs. GPUs are widely used for video games, a huge and competitive
market that has driven down hardware prices. GPUs excel at the fast matrix and vector multiplications
required not only for convincing virtual realities but also for NN training, where they can speed up
learning by a factor of 50 and more. Some of the GPU-based FNN implementations (Sec. 5.16–5.19)
have greatly contributed to recent successes in contests for pattern recognition (Sec. 5.19–5.22), image
segmentation (Sec. 5.21), and object detection (Sec. 5.21–5.22).

5 Supervised NNs, Some Helped by Unsupervised NNs
The main focus of current practical applications is on Supervised Learning (SL), which has domi-
nated recent pattern recognition contests (Sec. 5.17–5.23). Several methods, however, use additional
Unsupervised Learning (UL) to facilitate SL (Sec. 5.7, 5.10, 5.15). It does make sense to treat SL and
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UL in the same section: often gradient-based methods, such as BP (Sec. 5.5.1), are used to optimize
objective functions of both UL and SL, and the boundary between SL and UL may blur, for example,
when it comes to time series prediction and sequence classification, e.g., Sec. 5.10, 5.12.

A historical timeline format will help to arrange subsections on important inspirations and techni-
cal contributions (although such a subsection may span a time interval of many years). Sec. 5.1 briefly
mentions early, shallow NN models since the 1940s (and 1800s), Sec. 5.2 additional early neurobio-
logical inspiration relevant for modern Deep Learning (DL). Sec. 5.3 is about GMDH networks (since
1965), to my knowledge the first (feedforward) DL systems. Sec. 5.4 is about the relatively deep
Neocognitron NN (1979) which is very similar to certain modern deep FNN architectures, as it com-
bines convolutional NNs (CNNs), weight pattern replication, and subsampling mechanisms. Sec. 5.5
uses the notation of Sec. 2 to compactly describe a central algorithm of DL, namely, backpropagation
(BP) for supervised weight-sharing FNNs and RNNs. It also summarizes the history of BP 1960-1981
and beyond. Sec. 5.6 describes problems encountered in the late 1980s with BP for deep NNs, and
mentions several ideas from the previous millennium to overcome them. Sec. 5.7 discusses a first hier-
archical stack (1987) of coupled UL-based Autoencoders (AEs)—this concept resurfaced in the new
millennium (Sec. 5.15). Sec. 5.8 is about applying BP to CNNs (1989), which is important for today’s
DL applications. Sec. 5.9 explains BP’s Fundamental DL Problem (of vanishing/exploding gradients)
discovered in 1991. Sec. 5.10 explains how a deep RNN stack of 1991 (the History Compressor) pre-
trained by UL helped to solve previously unlearnable DL benchmarks requiring Credit Assignment
Paths (CAPs, Sec. 3) of depth 1000 and more. Sec. 5.11 discusses a particular winner-take-all (WTA)
method called Max-Pooling (MP, 1992) widely used in today’s deep FNNs. Sec. 5.12 mentions a
first important contest won by SL NNs in 1994. Sec. 5.13 describes a purely supervised DL RNN
(Long Short-Term Memory, LSTM, 1995) for problems of depth 1000 and more. Sec. 5.14 mentions
an early contest of 2003 won by an ensemble of shallow FNNs, as well as good pattern recognition
results with CNNs and deep FNNs and LSTM RNNs (2003). Sec. 5.15 is mostly about Deep Belief
Networks (DBNs, 2006) and related stacks of Autoencoders (AEs, Sec. 5.7), both pre-trained by UL to
facilitate subsequent BP-based SL (compare Sec. 5.6.1, 5.10). Sec. 5.16 mentions the first SL-based
GPU-CNNs (2006), BP-trained MPCNNs (2007), and LSTM stacks (2007). Sec. 5.17–5.22 focus on
official competitions with secret test sets won by (mostly purely supervised) deep NNs since 2009,
in sequence recognition, image classification, image segmentation, and object detection. Many RNN
results depended on LSTM (Sec. 5.13); many FNN results depended on GPU-based FNN code de-
veloped since 2004 (Sec. 5.16, 5.17, 5.18, 5.19), in particular, GPU-MPCNNs (Sec. 5.19). Sec. 5.24
mentions recent tricks for improving DL in NNs, many of them closely related to earlier tricks from
the previous millennium (e.g., Sec. 5.6.2, 5.6.3). Sec. 5.25 discusses how artificial NNs can help to
understand biological NNs; Sec. 5.26 addresses the possibility of DL in NNs with spiking neurons.

5.1 Early NNs Since the 1940s (and the 1800s)
Early NN architectures (McCulloch and Pitts, 1943) did not learn. The first ideas about UL were
published a few years later (Hebb, 1949). The following decades brought simple NNs trained by
SL (e.g., Rosenblatt, 1958, 1962; Widrow and Hoff, 1962; Narendra and Thathatchar, 1974) and
UL (e.g., Grossberg, 1969; Kohonen, 1972; von der Malsburg, 1973; Willshaw and von der Malsburg,
1976), as well as closely related associative memories (e.g., Palm, 1980; Hopfield, 1982).

In a sense NNs have been around even longer, since early supervised NNs were essentially variants
of linear regression methods going back at least to the early 1800s (e.g., Legendre, 1805; Gauss, 1809,
1821); Gauss also refers to his work of 1795. Early NNs had a maximal CAP depth of 1 (Sec. 3).
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5.2 Around 1960: Visual Cortex Provides Inspiration for DL (Sec. 5.4, 5.11)
Simple cells and complex cells were found in the cat’s visual cortex (e.g., Hubel and Wiesel, 1962;
Wiesel and Hubel, 1959). These cells fire in response to certain properties of visual sensory inputs,
such as the orientation of edges. Complex cells exhibit more spatial invariance than simple cells. This
inspired later deep NN architectures (Sec. 5.4, 5.11) used in certain modern award-winning Deep
Learners (Sec. 5.19–5.22).

5.3 1965: Deep Networks Based on the Group Method of Data Handling
Networks trained by the Group Method of Data Handling (GMDH) (Ivakhnenko and Lapa, 1965;
Ivakhnenko et al., 1967; Ivakhnenko, 1968, 1971) were perhaps the first DL systems of the Feed-
forward Multilayer Perceptron type, although there was earlier work on NNs with a single hidden
layer (e.g., Joseph, 1961; Viglione, 1970). The units of GMDH nets may have polynomial activation
functions implementing Kolmogorov-Gabor polynomials (more general than other widely used NN
activation functions, Sec. 2). Given a training set, layers are incrementally grown and trained by re-
gression analysis (e.g., Legendre, 1805; Gauss, 1809, 1821) (Sec. 5.1), then pruned with the help of
a separate validation set (using today’s terminology), where Decision Regularisation is used to weed
out superfluous units (compare Sec. 5.6.3). The numbers of layers and units per layer can be learned
in problem-dependent fashion. To my knowledge, this was the first example of open-ended, hierar-
chical representation learning in NNs (Sec. 4.3). A paper of 1971 already described a deep GMDH
network with 8 layers (Ivakhnenko, 1971). There have been numerous applications of GMDH-style
nets, e.g. (Ikeda et al., 1976; Farlow, 1984; Madala and Ivakhnenko, 1994; Ivakhnenko, 1995; Kondo,
1998; Kordı́k et al., 2003; Witczak et al., 2006; Kondo and Ueno, 2008).

5.4 1979: Convolution + Weight Replication + Subsampling (Neocognitron)
Apart from deep GMDH networks (Sec. 5.3), the Neocognitron (Fukushima, 1979, 1980, 2013a)
was perhaps the first artificial NN that deserved the attribute deep, and the first to incorporate the
neurophysiological insights of Sec. 5.2. It introduced convolutional NNs (today often called CNNs or
convnets), where the (typically rectangular) receptive field of a convolutional unit with given weight
vector (a filter) is shifted step by step across a 2-dimensional array of input values, such as the pixels
of an image (usually there are several such filters). The resulting 2D array of subsequent activation
events of this unit can then provide inputs to higher-level units, and so on. Due to massive weight
replication (Sec. 2), relatively few parameters (Sec. 4.4) may be necessary to describe the behavior of
such a convolutional layer.

Subsampling or downsampling layers consist of units whose fixed-weight connections originate
from physical neighbours in the convolutional layers below. Subsampling units become active if at
least one of their inputs is active; their responses are insensitive to certain small image shifts (compare
Sec. 5.2).

The Neocognitron is very similar to the architecture of modern, contest-winning, purely super-
vised, feedforward, gradient-based Deep Learners with alternating convolutional and downsampling
layers (e.g., Sec. 5.19–5.22). Fukushima, however, did not set the weights by supervised backpropa-
gation (Sec. 5.5, 5.8), but by local, WTA-based unsupervised learning rules (e.g., Fukushima, 2013b),
or by pre-wiring. In that sense he did not care for the DL problem (Sec. 5.9), although his architecture
was comparatively deep indeed. For downsampling purposes he used Spatial Averaging (Fukushima,
1980, 2011) instead of Max-Pooling (MP, Sec. 5.11), currently a particularly convenient and popular
WTA mechanism. Today’s DL combinations of CNNs and MP and BP also profit a lot from later
work (e.g., Sec. 5.8, 5.16, 5.16, 5.19).
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5.5 1960-1981 and Beyond: Development of Backpropagation (BP) for NNs
The minimisation of errors through gradient descent (Hadamard, 1908) in the parameter space of
complex, nonlinear, differentiable (Leibniz, 1684), multi-stage, NN-related systems has been dis-
cussed at least since the early 1960s (e.g., Kelley, 1960; Bryson, 1961; Bryson and Denham, 1961;
Pontryagin et al., 1961; Dreyfus, 1962; Wilkinson, 1965; Amari, 1967; Bryson and Ho, 1969; Direc-
tor and Rohrer, 1969), initially within the framework of Euler-LaGrange equations in the Calculus of
Variations (e.g., Euler, 1744).

Steepest descent in the weight space of such systems can be performed (Bryson, 1961; Kelley,
1960; Bryson and Ho, 1969) by iterating the chain rule (Leibniz, 1676; L’Hôpital, 1696) à la Dynamic
Programming (DP) (Bellman, 1957). A simplified derivation of this backpropagation method uses the
chain rule only (Dreyfus, 1962).

The systems of the 1960s were already efficient in the DP sense. However, they backpropagated
derivative information through standard Jacobian matrix calculations from one “layer” to the previous
one, without explicitly addressing either direct links across several layers or potential additional effi-
ciency gains due to network sparsity (but perhaps such enhancements seemed obvious to the authors).
Given all the prior work on learning in multilayer NN-like systems (see also Sec. 5.3 on deep non-
linear nets since 1965), it seems surprising in hindsight that a book (Minsky and Papert, 1969) on the
limitations of simple linear perceptrons with a single layer (Sec. 5.1) discouraged some researchers
from further studying NNs.

Explicit, efficient error backpropagation (BP) in arbitrary, discrete, possibly sparsely connected,
NN-like networks apparently was first described in a 1970 master’s thesis (Linnainmaa, 1970, 1976),
albeit without reference to NNs. BP is also known as the reverse mode of automatic differentia-
tion (Griewank, 2012), where the costs of forward activation spreading essentially equal the costs of
backward derivative calculation. See early FORTRAN code (Linnainmaa, 1970) and closely related
work (Ostrovskii et al., 1971).

Efficient BP was soon explicitly used to minimize cost functions by adapting control parameters
(weights) (Dreyfus, 1973). Compare some preliminary, NN-specific discussion (Werbos, 1974, sec-
tion 5.5.1), a method for multilayer threshold NNs (Bobrowski, 1978), and a computer program for
automatically deriving and implementing BP for given differentiable systems (Speelpenning, 1980).

To my knowledge, the first NN-specific application of efficient BP as above was described in
1981 (Werbos, 1981, 2006). Related work was published several years later (Parker, 1985; LeCun,
1985, 1988). A paper of 1986 significantly contributed to the popularisation of BP for NNs (Rumelhart
et al., 1986), experimentally demonstrating the emergence of useful internal representations in hidden
layers. See generalisations for sequence-processing recurrent NNs (e.g., Williams, 1989; Robinson
and Fallside, 1987; Werbos, 1988; Williams and Zipser, 1988, 1989b,a; Rohwer, 1989; Pearlmutter,
1989; Gherrity, 1989; Williams and Peng, 1990; Schmidhuber, 1992a; Pearlmutter, 1995; Baldi, 1995;
Kremer and Kolen, 2001; Atiya and Parlos, 2000), also for equilibrium RNNs (Almeida, 1987; Pineda,
1987) with stationary inputs.

5.5.1 BP for Weight-Sharing Feedforward NNs (FNNs) and Recurrent NNs (RNNs)

Using the notation of Sec. 2 for weight-sharing FNNs or RNNs, after an episode of activation spread-
ing through differentiable f

t

, a single iteration of gradient descent through BP computes changes of
all w

i

in proportion to @E

@wi
=

P
t

@E

@nett

@nett
@wi

as in Algorithm 5.5.1 (for the additive case), where each
weight w

i

is associated with a real-valued variable 4
i

initialized by 0.
The computational costs of the backward (BP) pass are essentially those of the forward pass

(Sec. 2). Forward and backward passes are re-iterated until sufficient performance is reached.

11



Alg. 5.5.1: One iteration of BP for weight-sharing FNNs or RNNs
for t = T, . . . , 1 do
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t
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if x
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end for
change each w

i
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i

and a small real-valued learning rate

As of 2014, this simple BP method is still the central learning algorithm for FNNs and RNNs. No-
tably, most contest-winning NNs up to 2014 (Sec. 5.12, 5.14, 5.17, 5.19, 5.21, 5.22) did not augment
supervised BP by some sort of unsupervised learning as discussed in Sec. 5.7, 5.10, 5.15.

5.6 Late 1980s-2000 and Beyond: Numerous Improvements of NNs
By the late 1980s it seemed clear that BP by itself (Sec. 5.5) was no panacea. Most FNN applications
focused on FNNs with few hidden layers. Additional hidden layers often did not seem to offer empiri-
cal benefits. Many practitioners found solace in a theorem (Kolmogorov, 1965a; Hecht-Nielsen, 1989;
Hornik et al., 1989) stating that an NN with a single layer of enough hidden units can approximate
any multivariate continous function with arbitrary accuracy.

Likewise, most RNN applications did not require backpropagating errors far. Many researchers
helped their RNNs by first training them on shallow problems (Sec. 3) whose solutions then gener-
alized to deeper problems. In fact, some popular RNN algorithms restricted credit assignment to a
single step backwards (Elman, 1990; Jordan, 1986, 1997), also in more recent studies (Jaeger, 2001;
Maass et al., 2002; Jaeger, 2004).

Generally speaking, although BP allows for deep problems in principle, it seemed to work only
for shallow problems. The late 1980s and early 1990s saw a few ideas with a potential to overcome
this problem, which was fully understood only in 1991 (Sec. 5.9).

5.6.1 Ideas for Dealing with Long Time Lags and Deep CAPs

To deal with long time lags between relevant events, several sequence processing methods were pro-
posed, including Focused BP based on decay factors for activations of units in RNNs (Mozer, 1989,
1992), Time-Delay Neural Networks (TDNNs) (Lang et al., 1990) and their adaptive extension (Bo-
denhausen and Waibel, 1991), Nonlinear AutoRegressive with eXogenous inputs (NARX) RNNs (Lin
et al., 1996), certain hierarchical RNNs (Hihi and Bengio, 1996) (compare Sec. 5.10, 1991), RL
economies in RNNs with WTA units and local learning rules (Schmidhuber, 1989b), and other meth-
ods (e.g., Ring, 1993, 1994; Plate, 1993; de Vries and Principe, 1991; Sun et al., 1993a; Bengio
et al., 1994). However, these algorithms either worked for shallow CAPs only, could not generalize
to unseen CAP depths, had problems with greatly varying time lags between relevant events, needed
external fine tuning of delay constants, or suffered from other problems. In fact, it turned out that
certain simple but deep benchmark problems used to evaluate such methods are more quickly solved
by randomly guessing RNN weights until a solution is found (Hochreiter and Schmidhuber, 1996).

While the RNN methods above were designed for DL of temporal sequences, the Neural Heat
Exchanger (Schmidhuber, 1990c) consists of two parallel deep FNNs with opposite flow directions.
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Input patterns enter the first FNN and are propagated “up”. Desired outputs (targets) enter the “oppo-
site” FNN and are propagated “down”. Using a local learning rule, each layer in each net tries to be
similar (in information content) to the preceding layer and to the adjacent layer of the other net. The
input entering the first net slowly “heats up” to become the target. The target entering the opposite net
slowly “cools down” to become the input. The Helmholtz Machine (Dayan et al., 1995; Dayan and
Hinton, 1996) may be viewed as an unsupervised (Sec. 5.6.4) variant thereof (Peter Dayan, personal
communication, 1994).

A hybrid approach (Shavlik and Towell, 1989; Towell and Shavlik, 1994) initializes a poten-
tially deep FNN through a domain theory in propositional logic, which may be acquired through
explanation-based learning (Mitchell et al., 1986; DeJong and Mooney, 1986; Minton et al., 1989).
The NN is then fine-tuned through BP (Sec. 5.5). The NN’s depth reflects the longest chain of
reasoning in the original set of logical rules. An extension of this approach (Maclin and Shavlik,
1993; Shavlik, 1994) initializes an RNN by domain knowledge expressed as a Finite State Automa-
ton (FSA). BP-based fine-tuning has become important for later DL systems pre-trained by UL, e.g.,
Sec. 5.10, 5.15.

5.6.2 Better BP Through Advanced Gradient Descent (Compare Sec. 5.24)

Numerous improvements of steepest descent through BP (Sec. 5.5) have been proposed. Least-
squares methods (Gauss-Newton, Levenberg-Marquardt) (Gauss, 1809; Newton, 1687; Levenberg,
1944; Marquardt, 1963; Schaback and Werner, 1992) and quasi-Newton methods (Broyden-Fletcher-
Goldfarb-Shanno, BFGS) (Broyden et al., 1965; Fletcher and Powell, 1963; Goldfarb, 1970; Shanno,
1970) are computationally too expensive for large NNs. Partial BFGS (Battiti, 1992; Saito and
Nakano, 1997) and conjugate gradient (Hestenes and Stiefel, 1952; Møller, 1993) as well as other
methods (Solla, 1988; Schmidhuber, 1989a; Cauwenberghs, 1993) provide sometimes useful fast al-
ternatives. BP can be treated as a linear least-squares problem (Biegler-König and Bärmann, 1993),
where second-order gradient information is passed back to preceding layers.

To speed up BP, momentum was introduced (Rumelhart et al., 1986), ad-hoc constants were added
to the slope of the linearized activation function (Fahlman, 1988), or the nonlinearity of the slope was
exaggerated (West and Saad, 1995).

Only the signs of the error derivatives are taken into account by the successful and widely used
BP variant R-prop (Riedmiller and Braun, 1993) and the robust variation iRprop+ (Igel and Hüsken,
2003), which was also successfully applied to RNNs.

The local gradient can be normalized based on the NN architecture (Schraudolph and Sejnowski,
1996), through a diagonalized Hessian approach (Becker and Le Cun, 1989), or related efficient meth-
ods (Schraudolph, 2002).

Some algorithms for controlling BP step size adapt a global learning rate (Lapedes and Farber,
1986; Vogl et al., 1988; Battiti, 1989; LeCun et al., 1993; Yu et al., 1995), while others compute in-
dividual learning rates for each weight (Jacobs, 1988; Silva and Almeida, 1990). In online learning,
where BP is applied after each pattern presentation, the vario-⌘ algorithm (Neuneier and Zimmer-
mann, 1996) sets each weight’s learning rate inversely proportional to the empirical standard devia-
tion of its local gradient, thus normalizing the stochastic weight fluctuations. Compare a local online
step size adaptation method for nonlinear NNs (Almeida et al., 1997).

Many additional tricks for improving NNs have been described (e.g., Orr and Müller, 1998; Mon-
tavon et al., 2012). Compare Sec. 5.6.3 and recent developments mentioned in Sec. 5.24.
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5.6.3 Searching For Simple, Low-Complexity, Problem-Solving NNs (Sec. 5.24)

Many researchers used BP-like methods to search for “simple,” low-complexity NNs (Sec. 4.4)
with high generalization capability. Most approaches address the bias/variance dilemma (Geman
et al., 1992) through strong prior assumptions. For example, weight decay (Hanson and Pratt, 1989;
Weigend et al., 1991; Krogh and Hertz, 1992) encourages near-zero weights, by penalizing large
weights. In a Bayesian framework (Bayes, 1763), weight decay can be derived (Hinton and van
Camp, 1993) from Gaussian or Laplacian weight priors (Gauss, 1809; Laplace, 1774); see also (Mur-
ray and Edwards, 1993). An extension of this approach postulates that a distribution of networks with
many similar weights generated by Gaussian mixtures is “better” a priori (Nowlan and Hinton, 1992).

Often weight priors are implicit in additional penalty terms (MacKay, 1992) or in methods based
on validation sets (Mosteller and Tukey, 1968; Stone, 1974; Eubank, 1988; Hastie and Tibshirani,
1990; Craven and Wahba, 1979; Golub et al., 1979), Akaike’s information criterion and final pre-
diction error (Akaike, 1970, 1973, 1974), or generalized prediction error (Moody and Utans, 1994;
Moody, 1992). See also (Holden, 1994; Wang et al., 1994; Amari and Murata, 1993; Wang et al.,
1994; Guyon et al., 1992; Vapnik, 1992; Wolpert, 1994). Similar priors (or biases towards simplicity)
are implicit in constructive and pruning algorithms, e.g., layer-by-layer sequential network construc-
tion (e.g., Ivakhnenko, 1968, 1971; Ash, 1989; Moody, 1989; Gallant, 1988; Honavar and Uhr, 1988;
Ring, 1991; Fahlman, 1991; Weng et al., 1992; Honavar and Uhr, 1993; Burgess, 1994; Fritzke, 1994;
Parekh et al., 2000; Utgoff and Stracuzzi, 2002) (see also Sec. 5.3, 5.11), input pruning (Moody, 1992;
Refenes et al., 1994), unit pruning (e.g., Ivakhnenko, 1968, 1971; White, 1989; Mozer and Smolen-
sky, 1989; Levin et al., 1994), weight pruning, e.g., optimal brain damage (LeCun et al., 1990b), and
optimal brain surgeon (Hassibi and Stork, 1993).

A very general but not always practical approach for discovering low-complexity SL NNs or
RL NNs searches among weight matrix-computing programs written in a universal programming
language, with a bias towards fast and short programs (Schmidhuber, 1997) (Sec. 6.7).

Flat Minimum Search (FMS) (Hochreiter and Schmidhuber, 1997a, 1999) searches for a “flat”
minimum of the error function: a large connected region in weight space where error is low and re-
mains approximately constant, that is, few bits of information are required to describe low-precision
weights with high variance. Compare perturbation tolerance conditions (Minai and Williams, 1994;
Murray and Edwards, 1993; Hanson, 1990; Neti et al., 1992; Matsuoka, 1992; Bishop, 1993; Ker-
lirzin and Vallet, 1993; Carter et al., 1990). An MDL-based, Bayesian argument suggests that flat
minima correspond to “simple” NNs and low expected overfitting. Compare Sec. 5.6.4 and more
recent developments mentioned in Sec. 5.24.

5.6.4 Potential Benefits of UL for SL (Compare Sec. 5.7, 5.10, 5.15)

The notation of Sec. 2 introduced teacher-given labels d
t

. Many papers of the previous millennium,
however, were about unsupervised learning (UL) without a teacher (e.g., Hebb, 1949; von der Mals-
burg, 1973; Kohonen, 1972, 1982, 1988; Willshaw and von der Malsburg, 1976; Grossberg, 1976a,b;
Watanabe, 1985; Pearlmutter and Hinton, 1986; Barrow, 1987; Field, 1987; Oja, 1989; Barlow et al.,
1989; Baldi and Hornik, 1989; Sanger, 1989; Ritter and Kohonen, 1989; Rubner and Schulten, 1990;
Földiák, 1990; Martinetz et al., 1990; Kosko, 1990; Mozer, 1991; Palm, 1992; Atick et al., 1992;
Miller, 1994; Saund, 1994; Földiák and Young, 1995; Deco and Parra, 1997); see also post-2000
work (e.g., Carreira-Perpinan, 2001; Wiskott and Sejnowski, 2002; Franzius et al., 2007; Waydo and
Koch, 2008).

Many UL methods are designed to maximize entropy-related, information-theoretic (Boltzmann,
1909; Shannon, 1948; Kullback and Leibler, 1951) objectives (e.g., Linsker, 1988; Barlow et al., 1989;
MacKay and Miller, 1990; Plumbley, 1991; Schmidhuber, 1992b,c; Schraudolph and Sejnowski,
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1993; Redlich, 1993; Zemel, 1993; Zemel and Hinton, 1994; Field, 1994; Hinton et al., 1995; Dayan
and Zemel, 1995; Amari et al., 1996; Deco and Parra, 1997).

Many do this to uncover and disentangle hidden underlying sources of signals (e.g., Jutten and
Herault, 1991; Schuster, 1992; Andrade et al., 1993; Molgedey and Schuster, 1994; Comon, 1994;
Cardoso, 1994; Bell and Sejnowski, 1995; Karhunen and Joutsensalo, 1995; Belouchrani et al., 1997;
Hyvärinen et al., 2001; Szabó et al., 2006; Shan et al., 2007; Shan and Cottrell, 2014).

Many UL methods automatically and robustly generate distributed, sparse representations of in-
put patterns (Földiák, 1990; Hinton and Ghahramani, 1997; Lewicki and Olshausen, 1998; Hyvärinen
et al., 1999; Hochreiter and Schmidhuber, 1999; Falconbridge et al., 2006) through well-known fea-
ture detectors (e.g., Olshausen and Field, 1996; Schmidhuber et al., 1996), such as off-center-on-
surround-like structures, as well as orientation sensitive edge detectors and Gabor filters (Gabor,
1946). They extract simple features related to those observed in early visual pre-processing stages
of biological systems (e.g., De Valois et al., 1982; Jones and Palmer, 1987).

UL can also serve to extract invariant features from different data items (e.g., Becker, 1991)
through coupled NNs observing two different inputs (Schmidhuber and Prelinger, 1992), also called
Siamese NNs (e.g., Bromley et al., 1993; Hadsell et al., 2006; Taylor et al., 2011; Chen and Salman,
2011).

UL can help to encode input data in a form advantageous for further processing. In the context
of DL, one important goal of UL is redundancy reduction. Ideally, given an ensemble of input pat-
terns, redundancy reduction through a deep NN will create a factorial code (a code with statistically
independent components) of the ensemble (Barlow et al., 1989; Barlow, 1989), to disentangle the
unknown factors of variation (compare Bengio et al., 2013). Such codes may be sparse and can be
advantageous for (1) data compression, (2) speeding up subsequent BP (Becker, 1991), (3) trivialising
the task of subsequent naive yet optimal Bayes classifiers (Schmidhuber et al., 1996).

Most early UL FNNs had a single layer. Methods for deeper UL FNNs include hierarchical
(Sec. 4.3) self-organizing Kohonen maps (e.g., Koikkalainen and Oja, 1990; Lampinen and Oja, 1992;
Versino and Gambardella, 1996; Dittenbach et al., 2000; Rauber et al., 2002), hierarchical Gaussian
potential function networks (Lee and Kil, 1991), layer-wise UL of feature hierarchies fed into SL
classifiers (Behnke, 1999, 2003a), the Self-Organising Tree Algorithm (SOTA) (Herrero et al., 2001),
and nonlinear Autoencoders (AEs) with more than 3 (e.g., 5) layers (Kramer, 1991; Oja, 1991; DeMers
and Cottrell, 1993). Such AE NNs (Rumelhart et al., 1986) can be trained to map input patterns
to themselves, for example, by compactly encoding them through activations of units of a narrow
bottleneck hidden layer. Certain nonlinear AEs suffer from certain limitations (Baldi, 2012).

LOCOCODE (Hochreiter and Schmidhuber, 1999) uses FMS (Sec. 5.6.3) to find low-complexity
AEs with low-precision weights describable by few bits of information, often producing sparse or
factorial codes. Predictability Minimization (PM) (Schmidhuber, 1992c) searches for factorial codes
through nonlinear feature detectors that fight nonlinear predictors, trying to become both as infor-
mative and as unpredictable as possible. PM-based UL was applied not only to FNNs but also to
RNNs (e.g., Schmidhuber, 1993b; Lindstädt, 1993). Compare Sec. 5.10 on UL-based RNN stacks
(1991), as well as later UL RNNs (e.g., Klapper-Rybicka et al., 2001; Steil, 2007).

5.7 1987: UL Through Autoencoder (AE) Hierarchies (Compare Sec. 5.15)
Perhaps the first work to study potential benefits of UL-based pre-training was published in 1987. It
proposed unsupervised AE hierarchies (Ballard, 1987), closely related to certain post-2000 feedfor-
ward Deep Learners based on UL (Sec. 5.15). The lowest-level AE NN with a single hidden layer is
trained to map input patterns to themselves. Its hidden layer codes are then fed into a higher-level AE
of the same type, and so on. The hope is that the codes in the hidden AE layers have properties that
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facilitate subsequent learning. In one experiment, a particular AE-specific learning algorithm (dif-
ferent from traditional BP of Sec. 5.5.1) was used to learn a mapping in an AE stack pre-trained by
this type of UL (Ballard, 1987). This was faster than learning an equivalent mapping by BP through
a single deeper AE without pre-training. On the other hand, the task did not really require a deep
AE, that is, the benefits of UL were not that obvious from this experiment. Compare an early sur-
vey (Hinton, 1989) and the somewhat related Recursive Auto-Associative Memory (RAAM) (Pollack,
1988, 1990; Melnik et al., 2000), originally used to encode sequential linguistic structures of arbitrary
size through a fixed number of hidden units. More recently, RAAMs were also used as unsupervised
pre-processors to facilitate deep credit assignment for RL (Gisslen et al., 2011) (Sec. 6.4).

In principle, many UL methods (Sec. 5.6.4) could be stacked like the AEs above, the history-
compressing RNNs of Sec. 5.10, the Restricted Boltzmann Machines (RBMs) of Sec. 5.15, or hi-
erarchical Kohonen nets (Sec. 5.6.4), to facilitate subsequent SL. Compare Stacked Generaliza-
tion (Wolpert, 1992; Ting and Witten, 1997), and FNNs that profit from pre-training by competitive
UL (e.g., Rumelhart and Zipser, 1986) prior to BP-based fine-tuning (Maclin and Shavlik, 1995). See
also more recent methods using UL to improve subsequent SL (e.g., Behnke, 1999, 2003a; Escalante-
B. and Wiskott, 2013).

5.8 1989: BP for Convolutional NNs (CNNs, Sec. 5.4)
In 1989, backpropagation (Sec. 5.5) was applied (LeCun et al., 1989, 1990a, 1998) to Neocognitron-
like, weight-sharing, convolutional neural layers (Sec. 5.4) with adaptive connections. This combi-
nation, augmented by Max-Pooling (MP, Sec. 5.11, 5.16), and sped up on graphics cards (Sec. 5.19),
has become an essential ingredient of many modern, competition-winning, feedforward, visual Deep
Learners (Sec. 5.19–5.23). This work also introduced the MNIST data set of handwritten digits (Le-
Cun et al., 1989), which over time has become perhaps the most famous benchmark of Machine
Learning. CNNs helped to achieve good performance on MNIST (LeCun et al., 1990a) (CAP depth
5) and on fingerprint recognition (Baldi and Chauvin, 1993); similar CNNs were used commercially
in the 1990s.

5.9 1991: Fundamental Deep Learning Problem of Gradient Descent
A diploma thesis (Hochreiter, 1991) represented a milestone of explicit DL research. As mentioned
in Sec. 5.6, by the late 1980s, experiments had indicated that traditional deep feedforward or re-
current networks are hard to train by backpropagation (BP) (Sec. 5.5). Hochreiter’s work formally
identified a major reason: Typical deep NNs suffer from the now famous problem of vanishing or
exploding gradients. With standard activation functions (Sec. 1), cumulative backpropagated error
signals (Sec. 5.5.1) either shrink rapidly, or grow out of bounds. In fact, they decay exponentially in
the number of layers or CAP depth (Sec. 3), or they explode. This is also known as the long time
lag problem. Much subsequent DL research of the 1990s and 2000s was motivated by this insight.
Later work (Bengio et al., 1994) also studied basins of attraction and their stability under noise from a
dynamical systems point of view: either the dynamics are not robust to noise, or the gradients vanish.
See also (Hochreiter et al., 2001a; Tiňo and Hammer, 2004). Over the years, several ways of partially
overcoming the Fundamental Deep Learning Problem were explored:

I A Very Deep Learner of 1991 (the History Compressor, Sec. 5.10) alleviates the problem
through unsupervised pre-training for a hierarchy of RNNs. This greatly facilitates subsequent
supervised credit assignment through BP (Sec. 5.5). In the FNN case, similar effects can be
achieved through conceptually related AE stacks (Sec. 5.7, 5.15) and Deep Belief Networks
(DBNs, Sec. 5.15).
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II LSTM-like networks (Sec. 5.13, 5.16, 5.17, 5.21–5.23) alleviate the problem through a special
architecture unaffected by it.

III Today’s GPU-based computers have a million times the computational power of desktop ma-
chines of the early 1990s. This allows for propagating errors a few layers further down within
reasonable time, even in traditional NNs (Sec. 5.18). That is basically what is winning many of
the image recognition competitions now (Sec. 5.19, 5.21, 5.22). (Although this does not really
overcome the problem in a fundamental way.)

IV Hessian-free optimization (Sec. 5.6.2) can alleviate the problem for FNNs (Møller, 1993;
Pearlmutter, 1994; Schraudolph, 2002; Martens, 2010) (Sec. 5.6.2) and RNNs (Martens and
Sutskever, 2011) (Sec. 5.20).

V The space of NN weight matrices can also be searched without relying on error gradients,
thus avoiding the Fundamental Deep Learning Problem altogether. Random weight guessing
sometimes works better than more sophisticated methods (Hochreiter and Schmidhuber, 1996).
Certain more complex problems are better solved by using Universal Search (Levin, 1973b)
for weight matrix-computing programs written in a universal programming language (Schmid-
huber, 1997). Some are better solved by using linear methods to obtain optimal weights for
connections to output events (Sec. 2), and evolving weights of connections to other events—
this is called Evolino (Schmidhuber et al., 2007). Compare also related RNNs pre-trained by
certain UL rules (Steil, 2007), also in the case of spiking neurons (Yin et al., 2012; Klampfl and
Maass, 2013) (Sec. 5.26). Direct search methods are relevant not only for SL but also for more
general RL, and are discussed in more detail in Sec. 6.6.

5.10 1991: UL-Based History Compression Through a Deep Stack of RNNs
A working Very Deep Learner (Sec. 3) of 1991 (Schmidhuber, 1992b, 2013a) could perform credit as-
signment across hundreds of nonlinear operators or neural layers, by using unsupervised pre-training
for a hierarchy of RNNs.

The basic idea is still relevant today. Each RNN is trained for a while in unsupervised fashion to
predict its next input (e.g., Connor et al., 1994; Dorffner, 1996). From then on, only unexpected inputs
(errors) convey new information and get fed to the next higher RNN which thus ticks on a slower, self-
organising time scale. It can easily be shown that no information gets lost. It just gets compressed
(much of machine learning is essentially about compression, e.g., Sec. 4.4, 5.6.3, 6.7). For each
individual input sequence, we get a series of less and less redundant encodings in deeper and deeper
levels of this History Compressor or Neural Sequence Chunker, which can compress data in both
space (like feedforward NNs) and time. This is another good example of hierarchical representation
learning (Sec. 4.3). There also is a continuous variant of the history compressor (Schmidhuber et al.,
1993).

The RNN stack is essentially a deep generative model of the data, which can be reconstructed from
its compressed form. Adding another RNN to the stack improves a bound on the data’s description
length—equivalent to the negative logarithm of its probability (Huffman, 1952; Shannon, 1948)—as
long as there is remaining local learnable predictability in the data representation on the corresponding
level of the hierarchy. Compare a similar observation for feedforward Deep Belief Networks (DBNs,
2006, Sec. 5.15).

The system was able to learn many previously unlearnable DL tasks. One ancient illustrative
DL experiment (Schmidhuber, 1993b) required CAPs (Sec. 3) of depth 1200. The top level code of
the initially unsupervised RNN stack, however, got so compact that (previously infeasible) sequence
classification through additional BP-based SL became possible. Essentially the system used UL to
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greatly reduce problem depth. Compare earlier BP-based fine-tuning of NNs initialized by rules of
propositional logic (Shavlik and Towell, 1989) (Sec. 5.6.1).

There is a way of compressing higher levels down into lower levels, thus fully or partially col-
lapsing the RNN stack. The trick is to retrain a lower-level RNN to continually imitate (predict) the
hidden units of an already trained, slower, higher-level RNN (the “conscious” chunker), through ad-
ditional predictive output neurons (Schmidhuber, 1992b). This helps the lower RNN (the automatizer)
to develop appropriate, rarely changing memories that may bridge very long time lags. Again, this
procedure can greatly reduce the required depth of the BP process.

The 1991 system was a working Deep Learner in the modern post-2000 sense, and also a first
Neural Hierarchical Temporal Memory (HTM). It is conceptually similar to earlier AE hierarchies
(1987, Sec. 5.7) and later Deep Belief Networks (2006, Sec. 5.15), but more general in the sense
that it uses sequence-processing RNNs instead of FNNs with unchanging inputs. More recently,
well-known entrepreneurs (Hawkins and George, 2006; Kurzweil, 2012) also got interested in HTMs;
compare also hierarchical HMMs (e.g., Fine et al., 1998), as well as later UL-based recurrent sys-
tems (Klapper-Rybicka et al., 2001; Steil, 2007; Klampfl and Maass, 2013; Young et al., 2014).
Clockwork RNNs (Koutnı́k et al., 2014) also consist of interacting RNN modules with different clock
rates, but do not use UL to set those rates. Stacks of RNNs were used in later work on SL with great
success, e.g., Sec. 5.13, 5.16, 5.17, 5.22.

5.11 1992: Max-Pooling (MP): Towards MPCNNs (Compare Sec. 5.16, 5.19)
The Neocognitron (Sec. 5.4) inspired the Cresceptron (Weng et al., 1992), which adapts its topol-
ogy during training (Sec. 5.6.3); compare the incrementally growing and shrinking GMDH networks
(1965, Sec. 5.3).

Instead of using alternative local subsampling or WTA methods (e.g., Fukushima, 1980; Schmid-
huber, 1989b; Maass, 2000; Fukushima, 2013a), the Cresceptron uses Max-Pooling (MP) layers. Here
a 2-dimensional layer or array of unit activations is partitioned into smaller rectangular arrays. Each
is replaced in a downsampling layer by the activation of its maximally active unit. A later, more com-
plex version of the Cresceptron (Weng et al., 1997) also included “blurring” layers to improve object
location tolerance.

The neurophysiologically plausible topology of the feedforward HMAX model (Riesenhuber and
Poggio, 1999) is very similar to the one of the 1992 Cresceptron (and thus to the 1979 Neocognitron).
HMAX does not learn though. Its units have hand-crafted weights; biologically plausible learning
rules were later proposed for similar models (e.g., Serre et al., 2002; Teichmann et al., 2012).

When CNNs or convnets (Sec. 5.4, 5.8) are combined with MP, they become Cresceptron-like
or HMAX-like MPCNNs with alternating convolutional and max-pooling layers. Unlike Cresceptron
and HMAX, however, MPCNNs are trained by BP (Sec. 5.5, 5.16) (Ranzato et al., 2007). Advantages
of doing this were pointed out subsequently (Scherer et al., 2010). BP-trained MPCNNs have become
central to many modern, competition-winning, feedforward, visual Deep Learners (Sec. 5.17, 5.19–
5.23).

5.12 1994: Early Contest-Winning NNs
Back in the 1990s, certain NNs already won certain controlled pattern recognition contests with secret
test sets. Notably, an NN with internal delay lines won the Santa Fe time-series competition on chaotic
intensity pulsations of an NH3 laser (Wan, 1994; Weigend and Gershenfeld, 1993). No very deep
CAPs (Sec. 3) were needed though.
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5.13 1995: Supervised Recurrent Very Deep Learner (LSTM RNN)
Supervised Long Short-Term Memory (LSTM) RNN (Hochreiter and Schmidhuber, 1997b; Gers et al.,
2000; Pérez-Ortiz et al., 2003) could eventually perform similar feats as the deep RNN hierarchy
of 1991 (Sec. 5.10), overcoming the Fundamental Deep Learning Problem (Sec. 5.9) without any
unsupervised pre-training. LSTM could also learn DL tasks without local sequence predictability
(and thus unlearnable by the partially unsupervised 1991 History Compressor, Sec. 5.10), dealing
with very deep problems (Sec. 3) (e.g., Gers et al., 2002).

The basic LSTM idea is very simple. Some of the units are called Constant Error Carousels
(CECs). Each CEC uses as an activation function f , the identity function, and has a connection to itself
with fixed weight of 1.0. Due to f ’s constant derivative of 1.0, errors backpropagated through a CEC
cannot vanish or explode (Sec. 5.9) but stay as they are (unless they “flow out” of the CEC to other,
typically adaptive parts of the NN). CECs are connected to several nonlinear adaptive units (some
with multiplicative activation functions) needed for learning nonlinear behavior. Weight changes of
these units often profit from error signals propagated far back in time through CECs. CECs are
the main reason why LSTM nets can learn to discover the importance of (and memorize) events that
happened thousands of discrete time steps ago, while previous RNNs already failed in case of minimal
time lags of 10 steps.

Many different LSTM variants and topologies are allowed. It is possible to evolve good problem-
specific topologies (Bayer et al., 2009). Some LSTM variants also use modifiable self-connections of
CECs (Gers and Schmidhuber, 2001).

To a certain extent, LSTM is biologically plausible (O’Reilly, 2003). LSTM learned to solve
many previously unlearnable DL tasks involving: Recognition of the temporal order of widely sep-
arated events in noisy input streams; Robust storage of high-precision real numbers across extended
time intervals; Arithmetic operations on continuous input streams; Extraction of information con-
veyed by the temporal distance between events; Recognition of temporally extended patterns in noisy
input sequences (Hochreiter and Schmidhuber, 1997b; Gers et al., 2000); Stable generation of pre-
cisely timed rhythms, as well as smooth and non-smooth periodic trajectories (Gers and Schmidhuber,
2000). LSTM clearly outperformed previous RNNs on tasks that require learning the rules of regu-
lar languages describable by deterministic Finite State Automata (FSAs) (Watrous and Kuhn, 1992;
Casey, 1996; Siegelmann, 1992; Blair and Pollack, 1997; Kalinke and Lehmann, 1998; Zeng et al.,
1994; Manolios and Fanelli, 1994; Omlin and Giles, 1996; Vahed and Omlin, 2004), both in terms of
reliability and speed.

LSTM also worked on tasks involving context free languages (CFLs) that cannot be represented
by HMMs or similar FSAs discussed in the RNN literature (Sun et al., 1993b; Wiles and Elman, 1995;
Andrews et al., 1995; Steijvers and Grunwald, 1996; Tonkes and Wiles, 1997; Rodriguez et al., 1999;
Rodriguez and Wiles, 1998). CFL recognition (Lee, 1996) requires the functional equivalent of a run-
time stack. Some previous RNNs failed to learn small CFL training sets (Rodriguez and Wiles, 1998).
Those that did not (Rodriguez et al., 1999; Bodén and Wiles, 2000) failed to extract the general rules,
and did not generalize well on substantially larger test sets. Similar for context-sensitive languages
(CSLs) (e.g., Chalup and Blair, 2003). LSTM generalized well though, requiring only the 30 shortest
exemplars (n  10) of the CSL anbncn to correctly predict the possible continuations of sequence
prefixes for n up to 1000 and more. A combination of a decoupled extended Kalman filter (Kalman,
1960; Williams, 1992b; Puskorius and Feldkamp, 1994; Feldkamp et al., 1998; Haykin, 2001; Feld-
kamp et al., 2003) and an LSTM RNN (Pérez-Ortiz et al., 2003) learned to deal correctly with values
of n up to 10 million and more. That is, after training the network was able to read sequences of
30,000,000 symbols and more, one symbol at a time, and finally detect the subtle differences be-
tween legal strings such as a10,000,000b10,000,000c10,000,000 and very similar but illegal strings such
as a10,000,000b9,999,999c10,000,000. Compare also more recent RNN algorithms able to deal with long
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time lags (Schäfer et al., 2006; Martens and Sutskever, 2011; Zimmermann et al., 2012; Koutnı́k et al.,
2014).

Bi-directional RNNs (BRNNs) (Schuster and Paliwal, 1997; Schuster, 1999) are designed for in-
put sequences whose starts and ends are known in advance, such as spoken sentences to be labeled by
their phonemes; compare (Fukada et al., 1999). To take both past and future context of each sequence
element into account, one RNN processes the sequence from start to end, the other backwards from
end to start. At each time step their combined outputs predict the corresponding label (if there is
any). BRNNs were successfully applied to secondary protein structure prediction (Baldi et al., 1999).
DAG-RNNs (Baldi and Pollastri, 2003; Wu and Baldi, 2008) generalize BRNNs to multiple dimen-
sions. They learned to predict properties of small organic molecules (Lusci et al., 2013) as well as
protein contact maps (Tegge et al., 2009), also in conjunction with a growing deep FNN (Di Lena
et al., 2012) (Sec. 5.21). BRNNs and DAG-RNNs unfold their full potential when combined with the
LSTM concept (Graves and Schmidhuber, 2005, 2009; Graves et al., 2009).

Particularly successful in recent competitions are stacks (Sec. 5.10) of LSTM RNNs (Fernan-
dez et al., 2007; Graves and Schmidhuber, 2009) trained by Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006), a gradient-based method for finding RNN weights that maxi-
mize the probability of teacher-given label sequences, given (typically much longer and more high-
dimensional) streams of real-valued input vectors. CTC-LSTM performs simultaneous segmentation
(alignment) and recognition (Sec. 5.22).

In the early 2000s, speech recognition was dominated by HMMs combined with FNNs (e.g.,
Bourlard and Morgan, 1994). Nevertheless, when trained from scratch on utterances from the TIDIG-
ITS speech database, in 2003 LSTM already obtained results comparable to those of HMM-based
systems (Graves et al., 2003; Beringer et al., 2005; Graves et al., 2006). In 2007, LSTM outperformed
HMMs in keyword spotting tasks (Fernández et al., 2007); compare recent improvements (Indermuhle
et al., 2011; Wöllmer et al., 2013). By 2013, LSTM also achieved best known results on the famous
TIMIT phoneme recognition benchmark (Graves et al., 2013) (Sec. 5.22). Recently, LSTM RNN /
HMM hybrids obtained best known performance on medium-vocabulary (Geiger et al., 2014) and
large-vocabulary speech recognition (Sak et al., 2014a).

LSTM is also applicable to robot localization (Förster et al., 2007), robot control (Mayer et al.,
2008), online driver distraction detection (Wöllmer et al., 2011), and many other tasks. For example,
it helped to improve the state of the art in diverse applications such as protein analysis (Hochreiter
and Obermayer, 2005), handwriting recognition (Graves et al., 2008, 2009; Graves and Schmidhuber,
2009; Bluche et al., 2014), voice activity detection (Eyben et al., 2013), optical character recogni-
tion (Breuel et al., 2013), language identification (Gonzalez-Dominguez et al., 2014), prosody contour
prediction (Fernandez et al., 2014), audio onset detection (Marchi et al., 2014), text-to-speech syn-
thesis (Fan et al., 2014), social signal classification (Brueckner and Schulter, 2014), machine transla-
tion (Sutskever et al., 2014), and others.

RNNs can also be used for metalearning (Schmidhuber, 1987; Schaul and Schmidhuber, 2010;
Prokhorov et al., 2002), because they can in principle learn to run their own weight change algo-
rithm (Schmidhuber, 1993a). A successful metalearner (Hochreiter et al., 2001b) used an LSTM
RNN to quickly learn a learning algorithm for quadratic functions (compare Sec. 6.8).

Recently, LSTM RNNs won several international pattern recognition competitions and set nu-
merous benchmark records on large and complex data sets, e.g., Sec. 5.17, 5.21, 5.22. Gradient-
based LSTM is no panacea though—other methods sometimes outperformed it at least on certain
tasks (Jaeger, 2004; Schmidhuber et al., 2007; Martens and Sutskever, 2011; Pascanu et al., 2013b;
Koutnı́k et al., 2014); compare Sec. 5.20.
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5.14 2003: More Contest-Winning/Record-Setting NNs; Successful Deep NNs
In the decade around 2000, many practical and commercial pattern recognition applications were
dominated by non-neural machine learning methods such as Support Vector Machines (SVMs) (Vap-
nik, 1995; Schölkopf et al., 1998). Nevertheless, at least in certain domains, NNs outperformed other
techniques.

A Bayes NN (Neal, 2006) based on an ensemble (Breiman, 1996; Schapire, 1990; Wolpert, 1992;
Hashem and Schmeiser, 1992; Ueda, 2000; Dietterich, 2000a) of NNs won the NIPS 2003 Feature
Selection Challenge with secret test set (Neal and Zhang, 2006). The NN was not very deep though—
it had two hidden layers and thus rather shallow CAPs (Sec. 3) of depth 3.

Important for many present competition-winning pattern recognisers (Sec. 5.19, 5.21, 5.22) were
developments in the CNN department. A BP-trained (LeCun et al., 1989) CNN (Sec. 5.4, Sec. 5.8) set
a new MNIST record of 0.4% (Simard et al., 2003), using training pattern deformations (Baird, 1990)
but no unsupervised pre-training (Sec. 5.7, 5.10, 5.15). A standard BP net achieved 0.7% (Simard
et al., 2003). Again, the corresponding CAP depth was low. Compare further improvements in
Sec. 5.16, 5.18, 5.19.

Good image interpretation results (Behnke, 2003b) were achieved with rather deep NNs trained
by the BP variant R-prop (Riedmiller and Braun, 1993) (Sec. 5.6.2); here feedback through recurrent
connections helped to improve image interpretation. FNNs with CAP depth up to 6 were used to
successfully classify high-dimensional data (Vieira and Barradas, 2003).

Deep LSTM RNNs started to obtain certain first speech recognition results comparable to those
of HMM-based systems (Graves et al., 2003); compare Sec. 5.13, 5.16, 5.21, 5.22.

5.15 2006/7: UL For Deep Belief Networks / AE Stacks Fine-Tuned by BP
While learning networks with numerous non-linear layers date back at least to 1965 (Sec. 5.3), and ex-
plicit DL research results have been published at least since 1991 (Sec. 5.9, 5.10), the expression Deep
Learning was actually coined around 2006, when unsupervised pre-training of deep FNNs helped to
accelerate subsequent SL through BP (Hinton and Salakhutdinov, 2006; Hinton et al., 2006). Compare
earlier terminology on loading deep networks (Sı́ma, 1994; Windisch, 2005) and learning deep mem-
ories (Gomez and Schmidhuber, 2005). Compare also BP-based (Sec. 5.5) fine-tuning (Sec. 5.6.1) of
(not so deep) FNNs pre-trained by competitive UL (Maclin and Shavlik, 1995).

The Deep Belief Network (DBN) is a stack of Restricted Boltzmann Machines (RBMs) (Smolen-
sky, 1986), which in turn are Boltzmann Machines (BMs) (Hinton and Sejnowski, 1986) with a single
layer of feature-detecting units; compare also Higher-Order BMs (Memisevic and Hinton, 2010).
Each RBM perceives pattern representations from the level below and learns to encode them in un-
supervised fashion. At least in theory under certain assumptions, adding more layers improves a
bound on the data’s negative log probability (Hinton et al., 2006) (equivalent to the data’s description
length—compare the corresponding observation for RNN stacks, Sec. 5.10). There are extensions for
Temporal RBMs (Sutskever et al., 2008).

Without any training pattern deformations (Sec. 5.14), a DBN fine-tuned by BP achieved 1.2%
error rate (Hinton and Salakhutdinov, 2006) on the MNIST handwritten digits (Sec. 5.8, 5.14). This
result helped to arouse interest in DBNs. DBNs also achieved good results on phoneme recognition,
with an error rate of 26.7% on the TIMIT core test set (Mohamed and Hinton, 2010); compare further
improvements through FNNs (Hinton et al., 2012a; Deng and Yu, 2014) and LSTM RNNs (Sec. 5.22).

A DBN-based technique called Semantic Hashing (Salakhutdinov and Hinton, 2009) maps se-
mantically similar documents (of variable size) to nearby addresses in a space of document rep-
resentations. It outperformed previous searchers for similar documents, such as Locality Sensitive
Hashing (Buhler, 2001; Datar et al., 2004). See the RBM/DBN tutorial (Fischer and Igel, 2014).
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Autoencoder (AE) stacks (Ballard, 1987) (Sec. 5.7) became a popular alternative way of pre-
training deep FNNs in unsupervised fashion, before fine-tuning (Sec. 5.6.1) them through BP
(Sec. 5.5) (Bengio et al., 2007; Vincent et al., 2008; Erhan et al., 2010). Sparse coding (Sec. 5.6.4)
was formulated as a combination of convex optimization problems (Lee et al., 2007a). Recent surveys
of stacked RBM and AE methods focus on post-2006 developments (Bengio, 2009; Arel et al., 2010).
Unsupervised DBNs and AE stacks are conceptually similar to, but in a certain sense less general
than, the unsupervised RNN stack-based History Compressor of 1991 (Sec. 5.10), which can process
and re-encode not only stationary input patterns, but entire pattern sequences.

5.16 2006/7: Improved CNNs / GPU-CNNs / BP for MPCNNs / LSTM Stacks
Also in 2006, a BP-trained (LeCun et al., 1989) CNN (Sec. 5.4, Sec. 5.8) set a new MNIST record
of 0.39% (Ranzato et al., 2006), using training pattern deformations (Sec. 5.14) but no unsupervised
pre-training. Compare further improvements in Sec. 5.18, 5.19. Similar CNNs were used for off-
road obstacle avoidance (LeCun et al., 2006). A combination of CNNs and TDNNs later learned to
map fixed-size representations of variable-size sentences to features relevant for language processing,
using a combination of SL and UL (Collobert and Weston, 2008).

2006 also saw an early GPU-based CNN implementation (Chellapilla et al., 2006) up to 4 times
faster than CPU-CNNs; compare also earlier GPU implementations of standard FNNs with a reported
speed-up factor of 20 (Oh and Jung, 2004). GPUs or graphics cards have become more and more
important for DL in subsequent years (Sec. 5.18–5.22).

In 2007, BP (Sec. 5.5) was applied for the first time (Ranzato et al., 2007) to Neocognitron-
inspired (Sec. 5.4), Cresceptron-like (or HMAX-like) MPCNNs (Sec. 5.11) with alternating convo-
lutional and max-pooling layers. BP-trained MPCNNs have become an essential ingredient of many
modern, competition-winning, feedforward, visual Deep Learners (Sec. 5.17, 5.19–5.23).

Also in 2007, hierarchical stacks of LSTM RNNs were introduced (Fernandez et al., 2007). They
can be trained by hierarchical Connectionist Temporal Classification (CTC) (Graves et al., 2006). For
tasks of sequence labelling, every LSTM RNN level (Sec. 5.13) predicts a sequence of labels fed to
the next level. Error signals at every level are back-propagated through all the lower levels. On spoken
digit recognition, LSTM stacks outperformed HMMs, despite making fewer assumptions about the
domain. LSTM stacks do not necessarily require unsupervised pre-training like the earlier UL-based
RNN stacks (Schmidhuber, 1992b) of Sec. 5.10.

5.17 2009: First Official Competitions Won by RNNs, and with MPCNNs
Stacks of LSTM RNNs trained by CTC (Sec. 5.13, 5.16) became the first RNNs to win official interna-
tional pattern recognition contests (with secret test sets known only to the organisers). More precisely,
three connected handwriting competitions at ICDAR 2009 in three different languages (French, Arab,
Farsi) were won by deep LSTM RNNs without any a priori linguistic knowledge, performing simul-
taneous segmentation and recognition. Compare (Graves and Schmidhuber, 2005; Graves et al., 2009;
Schmidhuber et al., 2011; Graves et al., 2013; Graves and Jaitly, 2014) (Sec. 5.22).

To detect human actions in surveillance videos, a 3-dimensional CNN (e.g., Jain and Seung, 2009;
Prokhorov, 2010), combined with SVMs, was part of a larger system (Yang et al., 2009) using a bag
of features approach (Nowak et al., 2006) to extract regions of interest. The system won three 2009
TRECVID competitions. These were possibly the first official international contests won with the
help of (MP)CNNs (Sec. 5.16). An improved version of the method was published later (Ji et al.,
2013).

2009 also saw a GPU-DBN implementation (Raina et al., 2009) orders of magnitudes faster than
previous CPU-DBNs (see Sec. 5.15); see also (Coates et al., 2013). The Convolutional DBN (Lee
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et al., 2009a) (with a probabilistic variant of MP, Sec. 5.11) combines ideas from CNNs and DBNs,
and was successfully applied to audio classification (Lee et al., 2009b).

5.18 2010: Plain Backprop (+ Distortions) on GPU Breaks MNIST Record
In 2010, a new MNIST (Sec. 5.8) record of 0.35% error rate was set by good old BP (Sec. 5.5)
in deep but otherwise standard NNs (Ciresan et al., 2010), using neither unsupervised pre-training
(e.g., Sec. 5.7, 5.10, 5.15) nor convolution (e.g., Sec. 5.4, 5.8, 5.14, 5.16). However, training pattern
deformations (e.g., Sec. 5.14) were important to generate a big training set and avoid overfitting. This
success was made possible mainly through a GPU implementation of BP that was up to 50 times
faster than standard CPU versions. A good value of 0.95% was obtained without distortions except
for small saccadic eye movement-like translations—compare Sec. 5.15.

Since BP was 3-5 decades old by then (Sec. 5.5), and pattern deformations 2 decades (Baird, 1990)
(Sec. 5.14), these results seemed to suggest that advances in exploiting modern computing hardware
were more important than advances in algorithms.

5.19 2011: MPCNNs on GPU Achieve Superhuman Vision Performance
In 2011, a flexible GPU-implementation (Ciresan et al., 2011a) of Max-Pooling (MP) CNNs or Con-
vnets was described (a GPU-MPCNN), building on earlier MP work (Weng et al., 1992) (Sec. 5.11)
CNNs (Fukushima, 1979; LeCun et al., 1989) (Sec. 5.4, 5.8, 5.16), and on early GPU-based CNNs
without MP (Chellapilla et al., 2006) (Sec. 5.16); compare early GPU-NNs (Oh and Jung, 2004) and
GPU-DBNs (Raina et al., 2009) (Sec. 5.17). MPCNNs have alternating convolutional layers (Sec. 5.4)
and max-pooling layers (MP, Sec. 5.11) topped by standard fully connected layers. All weights are
trained by BP (Sec. 5.5, 5.8, 5.16) (Ranzato et al., 2007; Scherer et al., 2010). GPU-MPCNNs have
become essential for many contest-winning FNNs (Sec. 5.21, Sec. 5.22).

Multi-Column GPU-MPCNNs (Ciresan et al., 2011b) are committees (Breiman, 1996; Schapire,
1990; Wolpert, 1992; Hashem and Schmeiser, 1992; Ueda, 2000; Dietterich, 2000a) of GPU-
MPCNNs with simple democratic output averaging. Several MPCNNs see the same input; their output
vectors are used to assign probabilities to the various possible classes. The class with the on average
highest probability is chosen as the system’s classification of the present input. Compare earlier, more
sophisticated ensemble methods (Schapire, 1990), the contest-winning ensemble Bayes-NN (Neal,
2006) of Sec. 5.14, and recent related work (Shao et al., 2014).

An ensemble of GPU-MPCNNs was the first system to achieve superhuman visual pattern recog-
nition (Ciresan et al., 2011b, 2012b) in a controlled competition, namely, the IJCNN 2011 traffic
sign recognition contest in San Jose (CA) (Stallkamp et al., 2011, 2012). This is of interest for fully
autonomous, self-driving cars in traffic (e.g., Dickmanns et al., 1994). The GPU-MPCNN ensem-
ble obtained 0.56% error rate and was twice better than human test subjects, three times better than
the closest artificial NN competitor (Sermanet and LeCun, 2011), and six times better than the best
non-neural method.

A few months earlier, the qualifying round was won in a 1st stage online competition, albeit by
a much smaller margin: 1.02% (Ciresan et al., 2011b) vs 1.03% for second place (Sermanet and
LeCun, 2011). After the deadline, the organisers revealed that human performance on the test set
was 1.19%. That is, the best methods already seemed human-competitive. However, during the
qualifying it was possible to incrementally gain information about the test set by probing it through
repeated submissions. This is illustrated by better and better results obtained by various teams over
time (Stallkamp et al., 2012) (the organisers eventually imposed a limit of 10 resubmissions). In the
final competition this was not possible.
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This illustrates a general problem with benchmarks whose test sets are public, or at least can be
probed to some extent: competing teams tend to overfit on the test set even when it cannot be directly
used for training, only for evaluation.

In 1997 many thought it a big deal that human chess world champion Kasparov was beaten by
an IBM computer. But back then computers could not at all compete with little kids in visual pat-
tern recognition, which seems much harder than chess from a computational perspective. Of course,
the traffic sign domain is highly restricted, and kids are still much better general pattern recognis-
ers. Nevertheless, by 2011, deep NNs could already learn to rival them in important limited visual
domains.

An ensemble of GPU-MPCNNs was also the first method to achieve human-competitive perfor-
mance (around 0.2%) on MNIST (Ciresan et al., 2012c). This represented a dramatic improvement,
since by then the MNIST record had hovered around 0.4% for almost a decade (Sec. 5.14, 5.16, 5.18).

Given all the prior work on (MP)CNNs (Sec. 5.4, 5.8, 5.11, 5.16) and GPU-CNNs (Sec. 5.16),
GPU-MPCNNs are not a breakthrough in the scientific sense. But they are a commercially relevant
breakthrough in efficient coding that has made a difference in several contests since 2011. Today, most
feedforward competition-winning deep NNs are (ensembles of) GPU-MPCNNs (Sec. 5.21–5.23).

5.20 2011: Hessian-Free Optimization for RNNs
Also in 2011 it was shown (Martens and Sutskever, 2011) that Hessian-free optimization (e.g., Møller,
1993; Pearlmutter, 1994; Schraudolph, 2002) (Sec. 5.6.2) can alleviate the Fundamental Deep Learn-
ing Problem (Sec. 5.9) in RNNs, outperforming standard gradient-based LSTM RNNs (Sec. 5.13) on
several tasks. Compare other RNN algorithms (Jaeger, 2004; Schmidhuber et al., 2007; Pascanu et al.,
2013b; Koutnı́k et al., 2014) that also at least sometimes yield better results than steepest descent for
LSTM RNNs.

5.21 2012: First Contests Won on ImageNet, Object Detection, Segmentation
In 2012, an ensemble of GPU-MPCNNs (Sec. 5.19) achieved best results on the ImageNet classifica-
tion benchmark (Krizhevsky et al., 2012), which is popular in the computer vision community. Here
relatively large image sizes of 256x256 pixels were necessary, as opposed to only 48x48 pixels for
the 2011 traffic sign competition (Sec. 5.19). See further improvements in Sec. 5.22.

Also in 2012, the biggest NN so far (109 free parameters) was trained in unsupervised mode
(Sec. 5.7, 5.15) on unlabeled data (Le et al., 2012), then applied to ImageNet. The codes across its top
layer were used to train a simple supervised classifier, which achieved best results so far on 20,000
classes. Instead of relying on efficient GPU programming, this was done by brute force on 1,000
standard machines with 16,000 cores.

So by 2011/2012, excellent results had been achieved by Deep Learners in image recognition and
classification (Sec. 5.19, 5.21). The computer vision community, however, is especially interested in
object detection in large images, for applications such as image-based search engines, or for biomed-
ical diagnosis where the goal may be to automatically detect tumors etc in images of human tissue.
Object detection presents additional challenges. One natural approach is to train a deep NN classifier
on patches of big images, then use it as a feature detector to be shifted across unknown visual scenes,
using various rotations and zoom factors. Image parts that yield highly active output units are likely
to contain objects similar to those the NN was trained on.

2012 finally saw the first DL system (an ensemble of GPU-MPCNNs, Sec. 5.19) to win a contest
on visual object detection (Ciresan et al., 2013) in large images of several million pixels (ICPR 2012
Contest on Mitosis Detection in Breast Cancer Histological Images, 2012; Roux et al., 2013). Such
biomedical applications may turn out to be among the most important applications of DL. The world
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spends over 10% of GDP on healthcare (> 6 trillion USD per year), much of it on medical diagnosis
through expensive experts. Partial automation of this could not only save lots of money, but also make
expert diagnostics accessible to many who currently cannot afford it. It is gratifying to observe that
today deep NNs may actually help to improve healthcare and perhaps save human lives.

2012 also saw the first pure image segmentation contest won by DL (Ciresan et al., 2012a), again
through an GPU-MPCNN ensemble (Segmentation of Neuronal Structures in EM Stacks Challenge,
2012).2 EM stacks are relevant for the recently approved huge brain projects in Europe and the
US (e.g., Markram, 2012). Given electron microscopy images of stacks of thin slices of animal
brains, the goal is to build a detailed 3D model of the brain’s neurons and dendrites. But human
experts need many hours and days and weeks to annotate the images: Which parts depict neuronal
membranes? Which parts are irrelevant background? This needs to be automated (e.g., Turaga et al.,
2010). Deep Multi-Column GPU-MPCNNs learned to solve this task through experience with many
training images, and won the contest on all three evaluation metrics by a large margin, with superhu-
man performance in terms of pixel error.

Both object detection (Ciresan et al., 2013) and image segmentation (Ciresan et al., 2012a) profit
from fast MPCNN-based image scans that avoid redundant computations. Recent MPCNN scanners
speed up naive implementations by up to three orders of magnitude (Masci et al., 2013; Giusti et al.,
2013); compare earlier efficient methods for CNNs without MP (Vaillant et al., 1994).

Also in 2012, a system consisting of growing deep FNNs and 2D-BRNNs (Di Lena et al., 2012)
won the CASP 2012 contest on protein contact map prediction. On the IAM-OnDoDB benchmark,
LSTM RNNs (Sec. 5.13) outperformed all other methods (HMMs, SVMs) on online mode detec-
tion (Otte et al., 2012; Indermuhle et al., 2012) and keyword spotting (Indermuhle et al., 2011). On the
long time lag problem of language modelling, LSTM RNNs outperformed all statistical approaches
on the IAM-DB benchmark (Frinken et al., 2012); improved results were later obtained through a
combination of NNs and HMMs (Zamora-Martnez et al., 2014). Compare earlier RNNs for object
recognition through iterative image interpretation (Behnke and Rojas, 1998; Behnke, 2002, 2003b);
see also more recent publications (Wyatte et al., 2012; OReilly et al., 2013) extending work on bio-
logically plausible learning rules for RNNs (O’Reilly, 1996).

5.22 2013-: More Contests and Benchmark Records
A stack (Fernandez et al., 2007; Graves and Schmidhuber, 2009) (Sec. 5.10) of bi-directional LSTM
RNNs (Graves and Schmidhuber, 2005) trained by CTC (Sec. 5.13, 5.17) broke a famous TIMIT
speech (phoneme) recognition record, achieving 17.7% test set error rate (Graves et al., 2013), despite
thousands of man years previously spent on Hidden Markov Model (HMMs)-based speech recognition
research. Compare earlier DBN results (Sec. 5.15).

CTC-LSTM also helped to score first at NIST’s OpenHaRT2013 evaluation (Bluche et al., 2014).
For optical character recognition (OCR), LSTM RNNs outperformed commercial recognizers of his-
torical data (Breuel et al., 2013). LSTM-based systems also set benchmark records in language iden-
tification (Gonzalez-Dominguez et al., 2014), medium-vocabulary speech recognition (Geiger et al.,
2014), prosody contour prediction (Fernandez et al., 2014), audio onset detection (Marchi et al.,
2014), text-to-speech synthesis (Fan et al., 2014), and social signal classification (Brueckner and
Schulter, 2014).

An LSTM RNN was used to estimate the state posteriors of an HMM; this system beat the previous
state of the art in large vocabulary speech recognition (Sak et al., 2014b,a). Another LSTM RNN with
hundreds of millions of connections was used to rerank hypotheses of a statistical machine translation

2It should be mentioned, however, that LSTM RNNs already performed simultaneous segmentation and recognition when
they became the first recurrent Deep Learners to win official international pattern recognition contests—see Sec. 5.17.
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system; this system beat the previous state of the art in English to French translation (Sutskever et al.,
2014).

A new record on the ICDAR Chinese handwriting recognition benchmark (over 3700 classes)
was set on a desktop machine by an ensemble of GPU-MPCNNs (Sec. 5.19) with almost human
performance (Ciresan and Schmidhuber, 2013); compare (Yin et al., 2013).

The MICCAI 2013 Grand Challenge on Mitosis Detection (Veta et al., 2013) also was won by an
object-detecting GPU-MPCNN ensemble (Ciresan et al., 2013). Its data set was even larger and more
challenging than the one of ICPR 2012 (Sec. 5.21): a real-world dataset including many ambiguous
cases and frequently encountered problems such as imperfect slide staining.

Three 2D-CNNs (with mean-pooling instead of MP, Sec. 5.11) observing three orthogonal projec-
tions of 3D images outperformed traditional full 3D methods on the task of segmenting tibial cartilage
in low field knee MRI scans (Prasoon et al., 2013).

Deep GPU-MPCNNs (Sec. 5.19) also helped to achieve new best results on important bench-
marks of the computer vision community: ImageNet classification (Zeiler and Fergus, 2013; Szegedy
et al., 2014) and—in conjunction with traditional approaches—PASCAL object detection (Girshick
et al., 2013). They also learned to predict bounding box coordinates of objects in the Imagenet
2013 database, and obtained state-of-the-art results on tasks of localization and detection (Sermanet
et al., 2013). GPU-MPCNNs also helped to recognise multi-digit numbers in Google Street View
images (Goodfellow et al., 2014b), where part of the NN was trained to count visible digits; compare
earlier work on detecting “numerosity” through DBNs (Stoianov and Zorzi, 2012). This system also
excelled at recognising distorted synthetic text in reCAPTCHA puzzles. Other successful CNN appli-
cations include scene parsing (Farabet et al., 2013), object detection (Szegedy et al., 2013), shadow
detection (Khan et al., 2014), video classification (Karpathy et al., 2014), and Alzheimers disease
neuroimaging (Li et al., 2014).

Additional contests are mentioned in the web pages of the Swiss AI Lab IDSIA, the University of
Toronto, NY University, and the University of Montreal.

5.23 Currently Successful Techniques: LSTM RNNs and GPU-MPCNNs
Most competition-winning or benchmark record-setting Deep Learners actually use one of two super-
vised techniques: (a) recurrent LSTM (1997) trained by CTC (2006) (Sec. 5.13, 5.17, 5.21, 5.22), or
(b) feedforward GPU-MPCNNs (2011, Sec. 5.19, 5.21, 5.22) based on CNNs (1979, Sec. 5.4) with
MP (1992, Sec. 5.11) trained through BP (1989–2007, Sec. 5.8, 5.16).

Exceptions include two 2011 contests (Goodfellow et al., 2011; Mesnil et al., 2011; Goodfel-
low et al., 2012) specialised on Transfer Learning from one dataset to another (e.g., Caruana, 1997;
Schmidhuber, 2004; Pan and Yang, 2010). However, deep GPU-MPCNNs do allow for pure SL-based
transfer (Ciresan et al., 2012d), where pre-training on one training set greatly improves performance
on quite different sets, also in more recent studies (Oquab et al., 2013; Donahue et al., 2013). In
fact, deep MPCNNs pre-trained by SL can extract useful features from quite diverse off-training-set
images, yielding better results than traditional, widely used features such as SIFT (Lowe, 1999, 2004)
on many vision tasks (Razavian et al., 2014). To deal with changing datasets, slowly learning deep
NNs were also combined with rapidly adapting “surface” NNs (Kak et al., 2010).

Remarkably, in the 1990s a trend went from partially unsupervised RNN stacks (Sec. 5.10) to
purely supervised LSTM RNNs (Sec. 5.13), just like in the 2000s a trend went from partially unsuper-
vised FNN stacks (Sec. 5.15) to purely supervised MPCNNs (Sec. 5.16–5.22). Nevertheless, in many
applications it can still be advantageous to combine the best of both worlds—supervised learning and
unsupervised pre-training (Sec. 5.10, 5.15).
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5.24 Recent Tricks for Improving SL Deep NNs (Compare Sec. 5.6.2, 5.6.3)
DBN training (Sec. 5.15) can be improved through gradient enhancements and automatic learning rate
adjustments during stochastic gradient descent (Cho et al., 2013; Cho, 2014), and through Tikhonov-
type (Tikhonov et al., 1977) regularization of RBMs (Cho et al., 2012). Contractive AEs (Rifai et al.,
2011) discourage hidden unit perturbations in response to input perturbations, similar to how FMS
(Sec. 5.6.3) for LOCOCODE AEs (Sec. 5.6.4) discourages output perturbations in response to weight
perturbations.

Hierarchical CNNs in a Neural Abstraction Pyramid (e.g., Behnke, 2003b, 2005) were trained to
reconstruct images corrupted by structured noise (Behnke, 2001), thus enforcing increasingly abstract
image representations in deeper and deeper layers. Denoising AEs later used a similar procedure (Vin-
cent et al., 2008).

Dropout (Hinton et al., 2012b; Ba and Frey, 2013) removes units from NNs during training to
improve generalisation. Some view it as an ensemble method that trains multiple data models simul-
taneously (Baldi and Sadowski, 2014). Under certain circumstances, it could also be viewed as a form
of training set augmentation: effectively, more and more informative complex features are removed
from the training data. Compare dropout for RNNs (Pham et al., 2013; Pachitariu and Sahani, 2013;
Pascanu et al., 2013a). A deterministic approximation coined fast dropout (Wang and Manning, 2013)
can lead to faster learning and evaluation and was adapted for RNNs (Bayer et al., 2013). Dropout is
closely related to older, biologically plausible techniques for adding noise to neurons or synapses dur-
ing training (e.g., Hanson, 1990; Murray and Edwards, 1993; Schuster, 1992; Nadal and Parga, 1994;
Jim et al., 1995; An, 1996), which in turn are closely related to finding perturbation-resistant low-
complexity NNs, e.g., through FMS (Sec. 5.6.3). MDL-based stochastic variational methods (Graves,
2011) are also related to FMS. They are useful for RNNs, where classic regularizers such as weight
decay (Sec. 5.6.3) represent a bias towards limited memory capacity (e.g., Pascanu et al., 2013b).
Compare recent work on variational recurrent AEs (Bayer and Osendorfer, 2014).

The activation function f of Rectified Linear Units (ReLUs) is f(x) = x for x > 0, f(x) = 0
otherwise—compare the old concept of half-wave rectified units (Malik and Perona, 1990). ReLU
NNs are useful for RBMs (Nair and Hinton, 2010; Maas et al., 2013), outperformed sigmoidal ac-
tivation functions in deep NNs (Glorot et al., 2011), and helped to obtain best results on several
benchmark problems across multiple domains (e.g., Krizhevsky et al., 2012; Dahl et al., 2013).

NNs with competing linear units tend to outperform those with non-competing nonlinear units,
and avoid catastrophic forgetting through BP when training sets change over time (Srivastava et al.,
2013). In this context, choosing a learning algorithm may be more important than choosing activation
functions (Goodfellow et al., 2014a). Maxout NNs (Goodfellow et al., 2013) combine competitive
interactions and dropout (see above) to achieve excellent results on certain benchmarks. Compare
early RNNs with competing units for SL and RL (Schmidhuber, 1989b). To address overfitting,
instead of depending on pre-wired regularizers and hyper-parameters (Hertz et al., 1991; Bishop,
2006), self-delimiting RNNs (SLIM NNs) with competing units (Schmidhuber, 2012) can in principle
learn to select their own runtime and their own numbers of effective free parameters, thus learning
their own computable regularisers (Sec. 4.4, 5.6.3), becoming fast and slim when necessary. One may
penalize the task-specific total length of connections (e.g., Legenstein and Maass, 2002; Schmidhuber,
2012, 2013b; Clune et al., 2013) and communication costs of SLIM NNs implemented on the 3-
dimensional brain-like multi-processor hardware to be expected in the future.

RmsProp (Tieleman and Hinton, 2012; Schaul et al., 2013) can speed up first order gradient de-
scent methods (Sec. 5.5, 5.6.2); compare vario-⌘ (Neuneier and Zimmermann, 1996), Adagrad (Duchi
et al., 2011) and Adadelta (Zeiler, 2012). DL in NNs can also be improved by transforming hidden
unit activations such that they have zero output and slope on average (Raiko et al., 2012). Many ad-
ditional, older tricks (Sec. 5.6.2, 5.6.3) should also be applicable to today’s deep NNs; compare (Orr
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and Müller, 1998; Montavon et al., 2012).

5.25 Consequences for Neuroscience
It is ironic that artificial NNs (ANNs) can help to better understand biological NNs (BNNs)—see
the ISBI 2012 results mentioned in Sec. 5.21 (Segmentation of Neuronal Structures in EM Stacks
Challenge, 2012; Ciresan et al., 2012a).

The feature detectors learned by single-layer visual ANNs are similar to those found in early
visual processing stages of BNNs (e.g., Sec. 5.6.4). Likewise, the feature detectors learned in deep
layers of visual ANNs should be highly predictive of what neuroscientists will find in deep layers
of BNNs. While the visual cortex of BNNs may use quite different learning algorithms, its objective
function to be minimised may be quite similar to the one of visual ANNs. In fact, results obtained with
relatively deep artificial DBNs (Lee et al., 2007b) and CNNs (Yamins et al., 2013) seem compatible
with insights about the visual pathway in the primate cerebral cortex, which has been studied for
many decades (e.g., Hubel and Wiesel, 1968; Perrett et al., 1982; Desimone et al., 1984; Felleman
and Van Essen, 1991; Perrett et al., 1992; Kobatake and Tanaka, 1994; Logothetis et al., 1995; Bichot
et al., 2005; Hung et al., 2005; Lennie and Movshon, 2005; Connor et al., 2007; Kriegeskorte et al.,
2008; DiCarlo et al., 2012); compare a computer vision-oriented survey (Kruger et al., 2013).

5.26 DL with Spiking Neurons?
Many recent DL results profit from GPU-based traditional deep NNs, e.g., Sec. 5.16–5.19. Current
GPUs, however, are little ovens, much hungrier for energy than biological brains, whose neurons ef-
ficiently communicate by brief spikes (Hodgkin and Huxley, 1952; FitzHugh, 1961; Nagumo et al.,
1962), and often remain quiet. Many computational models of such spiking neurons have been pro-
posed and analyzed (e.g., Gerstner and van Hemmen, 1992; Zipser et al., 1993; Stemmler, 1996;
Tsodyks et al., 1996; Maex and Orban, 1996; Maass, 1996, 1997; Kistler et al., 1997; Amit and
Brunel, 1997; Tsodyks et al., 1998; Kempter et al., 1999; Song et al., 2000; Stoop et al., 2000; Brunel,
2000; Bohte et al., 2002; Gerstner and Kistler, 2002; Izhikevich et al., 2003; Seung, 2003; Deco and
Rolls, 2005; Brette et al., 2007; Brea et al., 2013; Nessler et al., 2013; Kasabov, 2014; Hoerzer et al.,
2014; Rezende and Gerstner, 2014).

Future energy-efficient hardware for DL in NNs may implement aspects of such models (e.g.,
Liu et al., 2001; Roggen et al., 2003; Glackin et al., 2005; Schemmel et al., 2006; Fieres et al., 2008;
Khan et al., 2008; Serrano-Gotarredona et al., 2009; Jin et al., 2010; Indiveri et al., 2011; Neil and Liu,
2014; Merolla et al., 2014). A simulated, event-driven, spiking variant (Neftci et al., 2014) of an RBM
(Sec. 5.15) was trained by a variant of the Contrastive Divergence algorithm (Hinton, 2002). Spiking
nets were evolved to achieve reasonable performance on small face recognition data sets (Wysoski
et al., 2010) and to control simple robots (Floreano and Mattiussi, 2001; Hagras et al., 2004). A
spiking DBN with about 250,000 neurons (as part of a larger NN; Eliasmith et al., 2012; Eliasmith,
2013) achieved 6% error rate on MNIST; compare similar results with a spiking DBN variant of
depth 3 using a neuromorphic event-based sensor (O’Connor et al., 2013). In practical applications,
however, current artificial networks of spiking neurons cannot yet compete with the best traditional
deep NNs (e.g., compare MNIST results of Sec. 5.19).
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6 DL in FNNs and RNNs for Reinforcement Learning (RL)
So far we have focused on Deep Learning (DL) in supervised or unsupervised NNs. Such NNs learn
to perceive / encode / predict / classify patterns or pattern sequences, but they do not learn to act
in the more general sense of Reinforcement Learning (RL) in unknown environments (see surveys,
e.g., Kaelbling et al., 1996; Sutton and Barto, 1998; Wiering and van Otterlo, 2012). Here we add a
discussion of DL FNNs and RNNs for RL. It will be shorter than the discussion of FNNs and RNNs
for SL and UL (Sec. 5), reflecting the current size of the various fields.

Without a teacher, solely from occasional real-valued pain and pleasure signals, RL agents must
discover how to interact with a dynamic, initially unknown environment to maximize their expected
cumulative reward signals (Sec. 2). There may be arbitrary, a priori unknown delays between actions
and perceivable consequences. The problem is as hard as any problem of computer science, since any
task with a computable description can be formulated in the RL framework (e.g., Hutter, 2005). For
example, an answer to the famous question of whether P = NP (Levin, 1973b; Cook, 1971) would
also set limits for what is achievable by general RL. Compare more specific limitations, e.g., (Blondel
and Tsitsiklis, 2000; Madani et al., 2003; Vlassis et al., 2012). The following subsections mostly focus
on certain obvious intersections between DL and RL—they cannot serve as a general RL survey.

6.1 RL Through NN World Models Yields RNNs With Deep CAPs
In the special case of an RL FNN controller C interacting with a deterministic, predictable environ-
ment, a separate FNN called M can learn to become C’s world model through system identification,
predicting C’s inputs from previous actions and inputs (e.g., Werbos, 1981, 1987; Munro, 1987; Jor-
dan, 1988; Werbos, 1989b,a; Robinson and Fallside, 1989; Jordan and Rumelhart, 1990; Schmidhu-
ber, 1990d; Narendra and Parthasarathy, 1990; Werbos, 1992; Gomi and Kawato, 1993; Cochocki and
Unbehauen, 1993; Levin and Narendra, 1995; Miller et al., 1995; Ljung, 1998; Prokhorov et al., 2001;
Ge et al., 2010). Assume M has learned to produce accurate predictions. We can use M to substi-
tute the environment. Then M and C form an RNN where M ’s outputs become inputs of C, whose
outputs (actions) in turn become inputs of M . Now BP for RNNs (Sec. 5.5.1) can be used to achieve
desired input events such as high real-valued reward signals: While M ’s weights remain fixed, gradi-
ent information for C’s weights is propagated back through M down into C and back through M etc.
To a certain extent, the approach is also applicable in probabilistic or uncertain environments, as long
as the inner products of M ’s C-based gradient estimates and M ’s “true” gradients tend to be positive.

In general, this approach implies deep CAPs for C, unlike in DP-based traditional RL (Sec. 6.2).
Decades ago, the method was used to learn to back up a model truck (Nguyen and Widrow, 1989).
An RL active vision system used it to learn sequential shifts (saccades) of a fovea, to detect targets in
visual scenes (Schmidhuber and Huber, 1991), thus learning to control selective attention. Compare
RL-based attention learning without NNs (Whitehead, 1992).

To allow for memories of previous events in partially observable worlds (Sec. 6.3), the most gen-
eral variant of this technique uses RNNs instead of FNNs to implement both M and C (Schmidhuber,
1990d, 1991c; Feldkamp and Puskorius, 1998). This may cause deep CAPs not only for C but also
for M .

M can also be used to optimize expected reward by planning future action sequences (Schmid-
huber, 1990d). In fact, the winners of the 2004 RoboCup World Championship in the fast
league (Egorova et al., 2004) trained NNs to predict the effects of steering signals on fast robots
with 4 motors for 4 different wheels. During play, such NN models were used to achieve desirable
subgoals, by optimizing action sequences through quickly planning ahead. The approach also was
used to create self-healing robots able to compensate for faulty motors whose effects do not longer
match the predictions of the NN models (Gloye et al., 2005; Schmidhuber, 2007).
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Typically M is not given in advance. Then an essential question is: which experiments should C
conduct to quickly improve M? The Formal Theory of Fun and Creativity (e.g., Schmidhuber, 2006a,
2013b) formalizes driving forces and value functions behind such curious and exploratory behavior:
A measure of the learning progress of M becomes the intrinsic reward of C (Schmidhuber, 1991a);
compare (Singh et al., 2005; Oudeyer et al., 2013). This motivates C to create action sequences
(experiments) such that M makes quick progress.

6.2 Deep FNNs for Traditional RL and Markov Decision Processes (MDPs)
The classical approach to RL (Samuel, 1959; Bertsekas and Tsitsiklis, 1996) makes the simplifying
assumption of Markov Decision Processes (MDPs): the current input of the RL agent conveys all
information necessary to compute an optimal next output event or decision. This allows for greatly
reducing CAP depth in RL NNs (Sec. 3, 6.1) by using the Dynamic Programming (DP) trick (Bellman,
1957). The latter is often explained in a probabilistic framework (e.g., Sutton and Barto, 1998), but
its basic idea can already be conveyed in a deterministic setting. For simplicity, using the notation
of Sec. 2, let input events x

t

encode the entire current state of the environment, including a real-
valued reward r

t

(no need to introduce additional vector-valued notation, since real values can encode
arbitrary vectors of real values). The original RL goal (find weights that maximize the sum of all
rewards of an episode) is replaced by an equivalent set of alternative goals set by a real-valued value
function V defined on input events. Consider any two subsequent input events x
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is the last input event. Now search for weights
that maximize the V of all input events, by causing appropriate output events or actions.

Due to the Markov assumption, an FNN suffices to implement the policy that maps input to out-
put events. Relevant CAPs are not deeper than this FNN. V itself is often modeled by a separate
FNN (also yielding typically short CAPs) learning to approximate V (x

t

) only from local information
r
t

, V (x
k

).
Many variants of traditional RL exist (e.g., Barto et al., 1983; Watkins, 1989; Watkins and Dayan,

1992; Moore and Atkeson, 1993; Schwartz, 1993; Rummery and Niranjan, 1994; Singh, 1994; Baird,
1995; Kaelbling et al., 1995; Peng and Williams, 1996; Mahadevan, 1996; Tsitsiklis and van Roy,
1996; Bradtke et al., 1996; Santamarı́a et al., 1997; Prokhorov and Wunsch, 1997; Sutton and Barto,
1998; Wiering and Schmidhuber, 1998b; Baird and Moore, 1999; Meuleau et al., 1999; Morimoto and
Doya, 2000; Bertsekas, 2001; Brafman and Tennenholtz, 2002; Abounadi et al., 2002; Lagoudakis and
Parr, 2003; Sutton et al., 2008; Maei and Sutton, 2010; van Hasselt, 2012). Most are formulated in
a probabilistic framework, and evaluate pairs of input and output (action) events (instead of input
events only). To facilitate certain mathematical derivations, some discount delayed rewards, but such
distortions of the original RL problem are problematic.

Perhaps the most well-known RL NN is the world-class RL backgammon player (Tesauro, 1994),
which achieved the level of human world champions by playing against itself. Its nonlinear, rather
shallow FNN maps a large but finite number of discrete board states to values. More recently, a
rather deep GPU-CNN was used in a traditional RL framework to play several Atari 2600 computer
games directly from 84x84 pixel 60 Hz video input (Mnih et al., 2013), using experience replay (Lin,
1993), extending previous work on Neural Fitted Q-Learning (NFQ) (Riedmiller, 2005). Even bet-
ter results are achieved by using (slow) Monte Carlo tree planning to train comparatively fast deep
NNs (Guo et al., 2014). Compare RBM-based RL (Sallans and Hinton, 2004) with high-dimensional
inputs (Elfwing et al., 2010), earlier RL Atari players (Grüttner et al., 2010), and an earlier, raw video-
based RL NN for computer games (Koutnı́k et al., 2013) trained by Indirect Policy Search (Sec. 6.7).
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6.3 Deep RL RNNs for Partially Observable MDPs (POMDPs)
The Markov assumption (Sec. 6.2) is often unrealistic. We cannot directly perceive what is behind our
back, let alone the current state of the entire universe. However, memories of previous events can help
to deal with partially observable Markov decision problems (POMDPs) (e.g., Schmidhuber, 1990d,
1991c; Ring, 1991, 1993, 1994; Williams, 1992a; Lin, 1993; Teller, 1994; Kaelbling et al., 1995;
Littman et al., 1995; Boutilier and Poole, 1996; Jaakkola et al., 1995; McCallum, 1996; Kimura et al.,
1997; Wiering and Schmidhuber, 1996, 1998a; Otsuka et al., 2010). A naive way of implementing
memories without leaving the MDP framework (Sec. 6.2) would be to simply consider a possibly huge
state space, namely, the set of all possible observation histories and their prefixes. A more realistic
way is to use function approximators such as RNNs that produce compact state features as a function
of the entire history seen so far. Generally speaking, POMDP RL often uses DL RNNs to learn which
events to memorize and which to ignore. Three basic alternatives are:

1. Use an RNN as a value function mapping arbitrary event histories to values (e.g., Schmidhuber,
1990b, 1991c; Lin, 1993; Bakker, 2002). For example, deep LSTM RNNs were used in this
way for RL robots (Bakker et al., 2003).

2. Use an RNN controller in conjunction with a second RNN as predictive world model, to obtain
a combined RNN with deep CAPs—see Sec. 6.1.

3. Use an RNN for RL by Direct Search (Sec. 6.6) or Indirect Search (Sec. 6.7) in weight space.

In general, however, POMDPs may imply greatly increased CAP depth.

6.4 RL Facilitated by Deep UL in FNNs and RNNs
RL machines may profit from UL for input preprocessing (e.g., Jodogne and Piater, 2007). In partic-
ular, an UL NN can learn to compactly encode environmental inputs such as images or videos, e.g.,
Sec. 5.7, 5.10, 5.15. The compact codes (instead of the high-dimensional raw data) can be fed into an
RL machine, whose job thus may become much easier (Legenstein et al., 2010; Cuccu et al., 2011),
just like SL may profit from UL, e.g., Sec. 5.7, 5.10, 5.15. For example, NFQ (Riedmiller, 2005) was
applied to real-world control tasks (Lange and Riedmiller, 2010; Riedmiller et al., 2012) where purely
visual inputs were compactly encoded by deep autoencoders (Sec. 5.7, 5.15). RL combined with UL
based on Slow Feature Analysis (Wiskott and Sejnowski, 2002; Kompella et al., 2012) enabled a real
humanoid robot to learn skills from raw high-dimensional video streams (Luciw et al., 2013). To
deal with POMDPs (Sec. 6.3) involving high-dimensional inputs, RBM-based RL was used (Otsuka,
2010), and a RAAM (Pollack, 1988) (Sec. 5.7) was employed as a deep unsupervised sequence en-
coder for RL (Gisslen et al., 2011). Certain types of RL and UL also were combined in biologically
plausible RNNs with spiking neurons (Sec. 5.26) (e.g., Yin et al., 2012; Klampfl and Maass, 2013;
Rezende and Gerstner, 2014).

6.5 Deep Hierarchical RL (HRL) and Subgoal Learning with FNNs and RNNs
Multiple learnable levels of abstraction (Fu, 1977; Lenat and Brown, 1984; Ring, 1994; Bengio
et al., 2013; Deng and Yu, 2014) seem as important for RL as for SL. Work on NN-based Hierar-
chical RL (HRL) has been published since the early 1990s. In particular, gradient-based subgoal
discovery with FNNs or RNNs decomposes RL tasks into subtasks for RL submodules (Schmid-
huber, 1991b; Schmidhuber and Wahnsiedler, 1992). Numerous alternative HRL techniques have
been proposed (e.g., Ring, 1991, 1994; Jameson, 1991; Tenenberg et al., 1993; Weiss, 1994; Moore
and Atkeson, 1995; Precup et al., 1998; Dietterich, 2000b; Menache et al., 2002; Doya et al., 2002;
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Ghavamzadeh and Mahadevan, 2003; Barto and Mahadevan, 2003; Samejima et al., 2003; Bakker and
Schmidhuber, 2004; Whiteson et al., 2005; Simsek and Barto, 2008). While HRL frameworks such as
Feudal RL (Dayan and Hinton, 1993) and options (Sutton et al., 1999b; Barto et al., 2004; Singh et al.,
2005) do not directly address the problem of automatic subgoal discovery, HQ-Learning (Wiering and
Schmidhuber, 1998a) automatically decomposes POMDPs (Sec. 6.3) into sequences of simpler sub-
tasks that can be solved by memoryless policies learnable by reactive sub-agents. Recent HRL orga-
nizes potentially deep NN-based RL sub-modules into self-organizing, 2-dimensional motor control
maps (Ring et al., 2011) inspired by neurophysiological findings (Graziano, 2009).

6.6 Deep RL by Direct NN Search / Policy Gradients / Evolution
Not quite as universal as the methods of Sec. 6.8, yet both practical and more general than most
traditional RL algorithms (Sec. 6.2), are methods for Direct Policy Search (DS). Without a need for
value functions or Markovian assumptions (Sec. 6.2, 6.3), the weights of an FNN or RNN are directly
evaluated on the given RL problem. The results of successive trials inform further search for better
weights. Unlike with RL supported by BP (Sec. 5.5, 6.3, 6.1), CAP depth (Sec. 3, 5.9) is not a crucial
issue. DS may solve the credit assignment problem without backtracking through deep causal chains
of modifiable parameters—it neither cares for their existence, nor tries to exploit them.

An important class of DS methods for NNs are Policy Gradient methods (Williams, 1986, 1988,
1992a; Sutton et al., 1999a; Baxter and Bartlett, 2001; Aberdeen, 2003; Ghavamzadeh and Mahade-
van, 2003; Kohl and Stone, 2004; Wierstra et al., 2008; Rückstieß et al., 2008; Peters and Schaal,
2008b,a; Sehnke et al., 2010; Grüttner et al., 2010; Wierstra et al., 2010; Peters, 2010; Grondman
et al., 2012; Heess et al., 2012). Gradients of the total reward with respect to policies (NN weights)
are estimated (and then exploited) through repeated NN evaluations.

RL NNs can also be evolved through Evolutionary Algorithms (EAs) (Rechenberg, 1971; Schwe-
fel, 1974; Holland, 1975; Fogel et al., 1966; Goldberg, 1989) in a series of trials. Here several policies
are represented by a population of NNs improved through mutations and/or repeated recombinations
of the population’s fittest individuals (e.g., Montana and Davis, 1989; Fogel et al., 1990; Maniezzo,
1994; Happel and Murre, 1994; Nolfi et al., 1994b). Compare Genetic Programming (GP) (Cramer,
1985) (see also Smith, 1980) which can be used to evolve computer programs of variable size (Dick-
manns et al., 1987; Koza, 1992), and Cartesian GP (Miller and Thomson, 2000; Miller and Harding,
2009) for evolving graph-like programs, including NNs (Khan et al., 2010) and their topology (Turner
and Miller, 2013). Related methods include probability distribution-based EAs (Baluja, 1994; Sar-
avanan and Fogel, 1995; Sałustowicz and Schmidhuber, 1997; Larraanaga and Lozano, 2001), Co-
variance Matrix Estimation Evolution Strategies (CMA-ES) (Hansen and Ostermeier, 2001; Hansen
et al., 2003; Igel, 2003; Heidrich-Meisner and Igel, 2009), and NeuroEvolution of Augmenting Topolo-
gies (NEAT) (Stanley and Miikkulainen, 2002). Hybrid methods combine traditional NN-based RL
(Sec. 6.2) and EAs (e.g., Whiteson and Stone, 2006).

Since RNNs are general computers, RNN evolution is like GP in the sense that it can evolve
general programs. Unlike sequential programs learned by traditional GP, however, RNNs can mix
sequential and parallel information processing in a natural and efficient way, as already mentioned in
Sec. 1. Many RNN evolvers have been proposed (e.g., Miller et al., 1989; Wieland, 1991; Cliff et al.,
1993; Yao, 1993; Nolfi et al., 1994a; Sims, 1994; Yamauchi and Beer, 1994; Miglino et al., 1995;
Moriarty, 1997; Pasemann et al., 1999; Juang, 2004; Whiteson, 2012). One particularly effective
family of methods coevolves neurons, combining them into networks, and selecting those neurons
for reproduction that participated in the best-performing networks (Moriarty and Miikkulainen, 1996;
Gomez, 2003; Gomez and Miikkulainen, 2003). This can help to solve deep POMDPs (Gomez and
Schmidhuber, 2005). Co-Synaptic Neuro-Evolution (CoSyNE) does something similar on the level of
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synapses or weights (Gomez et al., 2008); benefits of this were shown on difficult nonlinear POMDP
benchmarks.

Natural Evolution Strategies (NES) (Wierstra et al., 2008; Glasmachers et al., 2010; Sun et al.,
2009, 2013) link policy gradient methods and evolutionary approaches through the concept of Natural
Gradients (Amari, 1998). RNN evolution may also help to improve SL for deep RNNs through
Evolino (Schmidhuber et al., 2007) (Sec. 5.9).

6.7 Deep RL by Indirect Policy Search / Compressed NN Search
Some DS methods (Sec. 6.6) can evolve NNs with hundreds or thousands of weights, but not mil-
lions. How to search for large and deep NNs? Most SL and RL methods mentioned so far somehow
search the space of weights w

i

. Some profit from a reduction of the search space through shared
w

i

that get reused over and over again, e.g., in CNNs (Sec. 5.4, 5.8, 5.16, 5.21), or in RNNs for SL
(Sec. 5.5, 5.13, 5.17) and RL (Sec. 6.1, 6.3, 6.6).

It may be possible, however, to exploit additional regularities/compressibilities in the space of so-
lutions, through indirect search in weight space. Instead of evolving large NNs directly (Sec. 6.6), one
can sometimes greatly reduce the search space by evolving compact encodings of NNs, e.g., through
Lindenmeyer Systems (Lindenmayer, 1968; Jacob et al., 1994), graph rewriting (Kitano, 1990), Cellu-
lar Encoding (Gruau et al., 1996), HyperNEAT (D’Ambrosio and Stanley, 2007; Stanley et al., 2009;
Clune et al., 2011; van den Berg and Whiteson, 2013) (extending NEAT; Sec. 6.6), and extensions
thereof (e.g., Risi and Stanley, 2012). This helps to avoid overfitting (compare Sec. 5.6.3, 5.24) and is
closely related to the topics of regularisation and MDL (Sec. 4.4).

A general approach (Schmidhuber, 1997) for both SL and RL seeks to compactly encode weights
of large NNs (Schmidhuber, 1997) through programs written in a universal programming lan-
guage (Gödel, 1931; Church, 1936; Turing, 1936; Post, 1936). Often it is much more efficient to
systematically search the space of such programs with a bias towards short and fast programs (Levin,
1973b; Schmidhuber, 1997, 2004), instead of directly searching the huge space of possible NN weight
matrices. A previous universal language for encoding NNs was assembler-like (Schmidhuber, 1997).
More recent work uses more practical languages based on coefficients of popular transforms (Fourier,
wavelet, etc). In particular, RNN weight matrices may be compressed like images, by encoding them
through the coefficients of a discrete cosine transform (DCT) (Koutnı́k et al., 2010, 2013). Compact
DCT-based descriptions can be evolved through NES or CoSyNE (Sec. 6.6). An RNN with over a
million weights learned (without a teacher) to drive a simulated car in the TORCS driving game (Loia-
cono et al., 2009, 2011), based on a high-dimensional video-like visual input stream (Koutnı́k et al.,
2013). The RNN learned both control and visual processing from scratch, without being aided by
UL. (Of course, UL might help to generate more compact image codes (Sec. 6.4, 4.2) to be fed into a
smaller RNN, to reduce the overall computational effort.)

6.8 Universal RL
General purpose learning algorithms may improve themselves in open-ended fashion and
environment-specific ways in a lifelong learning context (Schmidhuber, 1987; Schmidhuber et al.,
1997b,a; Schaul and Schmidhuber, 2010). The most general type of RL is constrained only by the
fundamental limitations of computability identified by the founders of theoretical computer science
(Gödel, 1931; Church, 1936; Turing, 1936; Post, 1936). Remarkably, there exist blueprints of univer-
sal problem solvers or universal RL machines for unlimited problem depth that are time-optimal in
various theoretical senses (Hutter, 2005, 2002; Schmidhuber, 2002, 2006b). In particular, the Gödel
Machine can be implemented on general computers such as RNNs and may improve any part of its
software (including the learning algorithm itself) in a way that is provably time-optimal in a certain
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sense (Schmidhuber, 2006b). It can be initialized by an asymptotically optimal meta-method (Hut-
ter, 2002) (also applicable to RNNs) which will solve any well-defined problem as quickly as the
unknown fastest way of solving it, save for an additive constant overhead that becomes negligible as
problem size grows. Note that most problems are large; only few are small. AI and DL researchers are
still in business because many are interested in problems so small that it is worth trying to reduce the
overhead through less general methods, including heuristics. Here I won’t further discuss universal
RL methods, which go beyond what is usually called DL.

7 Conclusion and Outlook
Deep Learning (DL) in Neural Networks (NNs) is relevant for Supervised Learning (SL) (Sec. 5),
Unsupervised Learning (UL) (Sec. 5), and Reinforcement Learning (RL) (Sec. 6). By alleviating
problems with deep Credit Assignment Paths (CAPs, Sec. 3, 5.9), UL (Sec. 5.6.4) can not only facil-
itate SL of sequences (Sec. 5.10) and stationary patterns (Sec. 5.7, 5.15), but also RL (Sec. 6.4, 4.2).
Dynamic Programming (DP, Sec. 4.1) is important for both deep SL (Sec. 5.5) and traditional RL with
deep NNs (Sec. 6.2). A search for solution-computing, perturbation-resistant (Sec. 5.6.3, 5.15, 5.24),
low-complexity NNs describable by few bits of information (Sec. 4.4) can reduce overfitting and im-
prove deep SL & UL (Sec. 5.6.3, 5.6.4) as well as RL (Sec. 6.7), also in the case of partially observable
environments (Sec. 6.3). Deep SL, UL, RL often create hierarchies of more and more abstract repre-
sentations of stationary data (Sec. 5.3, 5.7, 5.15), sequential data (Sec. 5.10), or RL policies (Sec. 6.5).
While UL can facilitate SL, pure SL for feedforward NNs (FNNs) (Sec. 5.5, 5.8, 5.16, 5.18) and re-
current NNs (RNNs) (Sec. 5.5, 5.13) did not only win early contests (Sec. 5.12, 5.14) but also most
of the recent ones (Sec. 5.17–5.22). Especially DL in FNNs profited from GPU implementations
(Sec. 5.16–5.19). In particular, GPU-based (Sec. 5.19) Max-Pooling (Sec. 5.11) Convolutional NNs
(Sec. 5.4, 5.8, 5.16) won competitions not only in pattern recognition (Sec. 5.19–5.22) but also image
segmentation (Sec. 5.21) and object detection (Sec. 5.21, 5.22).

Unlike these systems, humans learn to actively perceive patterns by sequentially directing atten-
tion to relevant parts of the available data. Near future deep NNs will do so, too, extending previous
work since 1990 on NNs that learn selective attention through RL of (a) motor actions such as saccade
control (Sec. 6.1) and (b) internal actions controlling spotlights of attention within RNNs, thus closing
the general sensorimotor loop through both external and internal feedback (e.g., Sec. 2, 5.21, 6.6, 6.7).

Many future deep NNs will also take into account that it costs energy to activate neurons, and to
send signals between them. Brains seem to minimize such computational costs during problem solv-
ing in at least two ways: (1) At a given time, only a small fraction of all neurons is active because local
competition through winner-take-all mechanisms shuts down many neighbouring neurons, and only
winners can activate other neurons through outgoing connections (compare SLIM NNs; Sec. 5.24).
(2) Numerous neurons are sparsely connected in a compact 3D volume by many short-range and
few long-range connections (much like microchips in traditional supercomputers). Often neighbour-
ing neurons are allocated to solve a single task, thus reducing communication costs. Physics seems
to dictate that any efficient computational hardware will in the future also have to be brain-like in
keeping with these two constraints. The most successful current deep RNNs, however, are not. Un-
like certain spiking NNs (Sec. 5.26), they usually activate all units at least slightly, and tend to be
strongly connected, ignoring natural constraints of 3D hardware. It should be possible to improve
them by adopting (1) and (2), and by minimizing non-differentiable energy and communication costs
through direct search in program (weight) space (e.g., Sec. 6.6, 6.7). These more brain-like RNNs
will allocate neighboring RNN parts to related behaviors, and distant RNN parts to less related ones,
thus self-modularizing in a way more general than that of traditional self-organizing maps in FNNs
(Sec. 5.6.4). They will also implement Occam’s razor (Sec. 4.4, 5.6.3) as a by-product of energy min-

34



imization, by finding simple (highly generalizing) problem solutions that require few active neurons
and few, mostly short connections.

The more distant future may belong to general purpose learning algorithms that improve them-
selves in provably optimal ways (Sec. 6.8), but these are not yet practical or commercially relevant.

8 Acknowledgments
Since 16 April 2014, drafts of this paper have undergone massive open online peer review through
public mailing lists including connectionists@cs.cmu.edu, ml-news@googlegroups.com, comp-neuro-
@neuroinf.org, genetic programming@yahoogroups.com, rl-list@googlegroups.com, imageworld-
@diku.dk, Google+ machine learning forum. Thanks to numerous NN / DL experts for valuable
comments. Thanks to SNF, DFG, and the European Commission for partially funding my DL re-
search group in the past quarter-century. The contents of this paper may be used for educational and
non-commercial purposes, including articles for Wikipedia and similar sites.

References
Aberdeen, D. (2003). Policy-Gradient Algorithms for Partially Observable Markov Decision Pro-

cesses. PhD thesis, Australian National University.

Abounadi, J., Bertsekas, D., and Borkar, V. S. (2002). Learning algorithms for Markov decision
processes with average cost. SIAM Journal on Control and Optimization, 40(3):681–698.

Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math., 22:203–217.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In
Second Intl. Symposium on Information Theory, pages 267–281. Akademinai Kiado.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723.

Allender, A. (1992). Application of time-bounded Kolmogorov complexity in complexity theory. In
Watanabe, O., editor, Kolmogorov complexity and computational complexity, pages 6–22. EATCS
Monographs on Theoretical Computer Science, Springer.

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In IEEE 1st International Conference on Neural Networks, San Diego, volume 2,
pages 609–618.

Almeida, L. B., Almeida, L. B., Langlois, T., Amaral, J. D., and Redol, R. A. (1997). On-line step
size adaptation. Technical report, INESC, 9 Rua Alves Redol, 1000.

Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE Trans. EC, 16(3):299–307.

Amari, S., Cichocki, A., and Yang, H. (1996). A new learning algorithm for blind signal separation.
In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information
Processing Systems (NIPS), volume 8. The MIT Press.

Amari, S. and Murata, N. (1993). Statistical theory of learning curves under entropic loss criterion.
Neural Computation, 5(1):140–153.

35



Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276.

Amit, D. J. and Brunel, N. (1997). Dynamics of a recurrent network of spiking neurons before and
following learning. Network: Computation in Neural Systems, 8(4):373–404.

An, G. (1996). The effects of adding noise during backpropagation training on a generalization
performance. Neural Computation, 8(3):643–674.

Andrade, M. A., Chacon, P., Merelo, J. J., and Moran, F. (1993). Evaluation of secondary structure
of proteins from UV circular dichroism spectra using an unsupervised learning neural network.
Protein Engineering, 6(4):383–390.

Andrews, R., Diederich, J., and Tickle, A. B. (1995). Survey and critique of techniques for extracting
rules from trained artificial neural networks. Knowledge-Based Systems, 8(6):373–389.

Anguita, D. and Gomes, B. A. (1996). Mixing floating- and fixed-point formats for neural network
learning on neuroprocessors. Microprocessing and Microprogramming, 41(10):757 – 769.

Anguita, D., Parodi, G., and Zunino, R. (1994). An efficient implementation of BP on RISC-based
workstations. Neurocomputing, 6(1):57 – 65.

Arel, I., Rose, D. C., and Karnowski, T. P. (2010). Deep machine learning – a new frontier in artificial
intelligence research. Computational Intelligence Magazine, IEEE, 5(4):13–18.

Ash, T. (1989). Dynamic node creation in backpropagation neural networks. Connection Science,
1(4):365–375.

Atick, J. J., Li, Z., and Redlich, A. N. (1992). Understanding retinal color coding from first principles.
Neural Computation, 4:559–572.

Atiya, A. F. and Parlos, A. G. (2000). New results on recurrent network training: unifying the algo-
rithms and accelerating convergence. IEEE Transactions on Neural Networks, 11(3):697–709.

Ba, J. and Frey, B. (2013). Adaptive dropout for training deep neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 3084–3092.

Baird, H. (1990). Document image defect models. In Proceddings, IAPR Workshop on Syntactic and
Structural Pattern Recognition, Murray Hill, NJ.

Baird, L. and Moore, A. W. (1999). Gradient descent for general reinforcement learning. In Advances
in neural information processing systems 12 (NIPS), pages 968–974. MIT Press.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approximation. In
International Conference on Machine Learning, pages 30–37.

Bakker, B. (2002). Reinforcement learning with Long Short-Term Memory. In Dietterich, T. G.,
Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14,
pages 1475–1482. MIT Press, Cambridge, MA.

Bakker, B. and Schmidhuber, J. (2004). Hierarchical reinforcement learning based on subgoal dis-
covery and subpolicy specialization. In et al., F. G., editor, Proc. 8th Conference on Intelligent
Autonomous Systems IAS-8, pages 438–445, Amsterdam, NL. IOS Press.

36



Bakker, B., Zhumatiy, V., Gruener, G., and Schmidhuber, J. (2003). A robot that reinforcement-learns
to identify and memorize important previous observations. In Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2003, pages 430–435.

Baldi, P. (1995). Gradient descent learning algorithms overview: A general dynamical systems per-
spective. IEEE Transactions on Neural Networks, 6(1):182–195.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. Journal of Machine
Learning Research (Proc. 2011 ICML Workshop on Unsupervised and Transfer Learning), 27:37–
50.

Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., and Soda, G. (1999). Exploiting the past and the
future in protein secondary structure prediction. Bioinformatics, 15:937–946.

Baldi, P. and Chauvin, Y. (1993). Neural networks for fingerprint recognition. Neural Computation,
5(3):402–418.

Baldi, P. and Chauvin, Y. (1996). Hybrid modeling, HMM/NN architectures, and protein applications.
Neural Computation, 8(7):1541–1565.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2:53–58.

Baldi, P. and Hornik, K. (1994). Learning in linear networks: a survey. IEEE Transactions on Neural
Networks, 6(4):837–858. 1995.

Baldi, P. and Pollastri, G. (2003). The principled design of large-scale recursive neural network
architectures – DAG-RNNs and the protein structure prediction problem. J. Mach. Learn. Res.,
4:575–602.

Baldi, P. and Sadowski, P. (2014). The dropout learning algorithm. Artificial Intelligence, 210C:78–
122.

Ballard, D. H. (1987). Modular learning in neural networks. In Proc. AAAI, pages 279–284.

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report CMU-CS-94-163,
Carnegie Mellon University.

Balzer, R. (1985). A 15 year perspective on automatic programming. IEEE Transactions on Software
Engineering, 11(11):1257–1268.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1(3):295–311.

Barlow, H. B., Kaushal, T. P., and Mitchison, G. J. (1989). Finding minimum entropy codes. Neural
Computation, 1(3):412–423.

Barrow, H. G. (1987). Learning receptive fields. In Proceedings of the IEEE 1st Annual Conference
on Neural Networks, volume IV, pages 115–121. IEEE.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(4):341–379.

37



Barto, A. G., Singh, S., and Chentanez, N. (2004). Intrinsically motivated learning of hierarchical col-
lections of skills. In Proceedings of International Conference on Developmental Learning (ICDL),
pages 112–119. MIT Press, Cambridge, MA.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13:834–846.

Battiti, R. (1989). Accelerated backpropagation learning: two optimization methods. Complex Sys-
tems, 3(4):331–342.

Battiti, T. (1992). First- and second-order methods for learning: Between steepest descent and New-
ton’s method. Neural Computation, 4(2):141–166.

Baum, E. B. and Haussler, D. (1989). What size net gives valid generalization? Neural Computation,
1(1):151–160.

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state
Markov chains. The Annals of Mathematical Statistics, pages 1554–1563.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. J. Artif. Int. Res.,
15(1):319–350.

Bayer, J. and Osendorfer, C. (2014). Variational inference of latent state sequences using recurrent
networks. arXiv preprint arXiv:1406.1655.

Bayer, J., Osendorfer, C., Chen, N., Urban, S., and van der Smagt, P. (2013). On fast dropout and its
applicability to recurrent networks. arXiv preprint arXiv:1311.0701.

Bayer, J., Wierstra, D., Togelius, J., and Schmidhuber, J. (2009). Evolving memory cell structures for
sequence learning. In Proc. ICANN (2), pages 755–764.

Bayes, T. (1763). An essay toward solving a problem in the doctrine of chances. Philosophical
Transactions of the Royal Society of London, 53:370–418. Communicated by R. Price, in a letter
to J. Canton.

Becker, S. (1991). Unsupervised learning procedures for neural networks. International Journal of
Neural Systems, 2(1 & 2):17–33.

Becker, S. and Le Cun, Y. (1989). Improving the convergence of back-propagation learning with
second order methods. In Touretzky, D., Hinton, G., and Sejnowski, T., editors, Proc. 1988 Con-
nectionist Models Summer School, pages 29–37, Pittsburg 1988. Morgan Kaufmann, San Mateo.

Behnke, S. (1999). Hebbian learning and competition in the neural abstraction pyramid. In Pro-
ceedings of the International Joint Conference on Neural Networks (IJCNN), volume 2, pages
1356–1361.

Behnke, S. (2001). Learning iterative image reconstruction in the neural abstraction pyramid. Inter-
national Journal of Computational Intelligence and Applications, 1(4):427–438.

Behnke, S. (2002). Learning face localization using hierarchical recurrent networks. In Proceedings
of the 12th International Conference on Artificial Neural Networks (ICANN), Madrid, Spain, pages
1319–1324.

38



Behnke, S. (2003a). Discovering hierarchical speech features using convolutional non-negative matrix
factorization. In Proceedings of the International Joint Conference on Neural Networks (IJCNN),
volume 4, pages 2758–2763.

Behnke, S. (2003b). Hierarchical Neural Networks for Image Interpretation, volume LNCS 2766 of
Lecture Notes in Computer Science. Springer.

Behnke, S. (2005). Face localization and tracking in the Neural Abstraction Pyramid. Neural Com-
puting and Applications, 14(2):97–103.

Behnke, S. and Rojas, R. (1998). Neural abstraction pyramid: A hierarchical image understand-
ing architecture. In Proceedings of International Joint Conference on Neural Networks (IJCNN),
volume 2, pages 820–825.

Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach to blind separation
and blind deconvolution. Neural Computation, 7(6):1129–1159.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1st
edition.

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., and Moulines, E. (1997). A blind source separation
technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2):434–444.

Bengio, Y. (1991). Artificial Neural Networks and their Application to Sequence Recognition. PhD
thesis, McGill University, (Computer Science), Montreal, Qc., Canada.

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine Learning,
V2(1). Now Publishers.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new per-
spectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1798–1828.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of deep
networks. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information
Processing Systems 19 (NIPS), pages 153–160. MIT Press.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Beringer, N., Graves, A., Schiel, F., and Schmidhuber, J. (2005). Classifying unprompted speech by
retraining LSTM nets. In Duch, W., Kacprzyk, J., Oja, E., and Zadrozny, S., editors, Artificial
Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3696, pages 575–581. Springer-
Verlag Berlin Heidelberg.

Bertsekas, D. P. (2001). Dynamic Programming and Optimal Control. Athena Scientific.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena Scientific, Bel-
mont, MA.

Bichot, N. P., Rossi, A. F., and Desimone, R. (2005). Parallel and serial neural mechanisms for visual
search in macaque area V4. Science, 308:529–534.
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H., Neuhauser, S., Raus, M., and Ritschel, W., editors, Proc. of Intl. Workshop on Neural Networks,
RWTH Aachen, pages 87–95. Augustinus.

Schmidhuber, J. and Prelinger, D. (1992). Discovering predictable classifications. Technical Report
CU-CS-626-92, Dept. of Comp. Sci., University of Colorado at Boulder. Published in Neural
Computation 5(4):625-635 (1993).

Schmidhuber, J. and Wahnsiedler, R. (1992). Planning simple trajectories using neural subgoal gen-
erators. In Meyer, J. A., Roitblat, H. L., and Wilson, S. W., editors, Proc. of the 2nd International
Conference on Simulation of Adaptive Behavior, pages 196–202. MIT Press.

Schmidhuber, J., Wierstra, D., Gagliolo, M., and Gomez, F. J. (2007). Training recurrent networks by
Evolino. Neural Computation, 19(3):757–779.

Schmidhuber, J., Zhao, J., and Schraudolph, N. (1997a). Reinforcement learning with self-modifying
policies. In Thrun, S. and Pratt, L., editors, Learning to learn, pages 293–309. Kluwer.

Schmidhuber, J., Zhao, J., and Wiering, M. (1997b). Shifting inductive bias with success-story algo-
rithm, adaptive Levin search, and incremental self-improvement. Machine Learning, 28:105–130.

Schölkopf, B., Burges, C. J. C., and Smola, A. J., editors (1998). Advances in Kernel Methods -
Support Vector Learning. MIT Press, Cambridge, MA.

77



Schraudolph, N. and Sejnowski, T. J. (1993). Unsupervised discrimination of clustered data via op-
timization of binary information gain. In Hanson, S. J., Cowan, J. D., and Giles, C. L., editors,
Advances in Neural Information Processing Systems, volume 5, pages 499–506. Morgan Kauf-
mann, San Mateo.

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723–1738.

Schraudolph, N. N. and Sejnowski, T. J. (1996). Tempering backpropagation networks: Not all
weights are created equal. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Ad-
vances in Neural Information Processing Systems (NIPS), volume 8, pages 563–569. The MIT
Press, Cambridge, MA.

Schrauwen, B., Verstraeten, D., and Van Campenhout, J. (2007). An overview of reservoir computing:
theory, applications and implementations. In Proceedings of the 15th European Symposium on
Artificial Neural Networks. p. 471-482 2007, pages 471–482.

Schuster, H. G. (1992). Learning by maximization the information transfer through nonlinear noisy
neurons and “noise breakdown”. Phys. Rev. A, 46(4):2131–2138.

Schuster, M. (1999). On supervised learning from sequential data with applications for speech recog-
nition. PhD thesis, Nara Institute of Science and Technolog, Kyoto, Japan.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45:2673–2681.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards. In
Proc. ICML, pages 298–305.

Schwefel, H. P. (1974). Numerische Optimierung von Computer-Modellen. Dissertation. Published
1977 by Birkhäuser, Basel.
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